代码拉取完成,页面将自动刷新
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Data;
using QuantConnect.Interfaces;
using QuantConnect.Orders;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression test showcasing an algorithm using the framework models
/// and directly calling <see cref="QCAlgorithm.EmitInsights"/>
/// </summary>
public class EmitInsightsAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly Symbol _symbol = QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA);
private bool _toggle;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
// Set requested data resolution
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// set algorithm framework models
SetUniverseSelection(new ManualUniverseSelectionModel(_symbol));
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromDays(1), 0.025, null));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
SetRiskManagement(new MaximumDrawdownPercentPerSecurity(0.01m));
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
if (_toggle)
{
_toggle = false;
var order = Transactions.GetOpenOrders(_symbol).FirstOrDefault();
if (order != null)
{
throw new Exception($"Unexpected open order {order}");
}
// we manually emit an insight
EmitInsights(Insight.Price(_symbol, Resolution.Daily, 1, InsightDirection.Down));
// emitted insight should have triggered a new order
order = Transactions.GetOpenOrders(_symbol).FirstOrDefault();
if (order == null)
{
throw new Exception("Expected open order for emitted insight");
}
if (order.Direction != OrderDirection.Sell
|| order.Symbol != _symbol)
{
throw new Exception($"Unexpected open order for emitted insight: {order}");
}
}
else
{
_toggle = true;
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "4"},
{"Average Win", "0.96%"},
{"Average Loss", "-0.95%"},
{"Compounding Annual Return", "-44.117%"},
{"Drawdown", "1.100%"},
{"Expectancy", "0.002"},
{"Net Profit", "-0.794%"},
{"Sharpe Ratio", "-2.497"},
{"Loss Rate", "50%"},
{"Win Rate", "50%"},
{"Profit-Loss Ratio", "1.00"},
{"Alpha", "0"},
{"Beta", "-28.473"},
{"Annual Standard Deviation", "0.131"},
{"Annual Variance", "0.017"},
{"Information Ratio", "-2.584"},
{"Tracking Error", "0.131"},
{"Treynor Ratio", "0.011"},
{"Total Fees", "$16.26"},
{"Total Insights Generated", "7"},
{"Total Insights Closed", "4"},
{"Total Insights Analysis Completed", "4"},
{"Long Insight Count", "5"},
{"Short Insight Count", "2"},
{"Long/Short Ratio", "250.0%"},
{"Estimated Monthly Alpha Value", "$15518791.1380"},
{"Total Accumulated Estimated Alpha Value", "$2672680.6960"},
{"Mean Population Estimated Insight Value", "$668170.1740"},
{"Mean Population Direction", "50%"},
{"Mean Population Magnitude", "50%"},
{"Rolling Averaged Population Direction", "50%"},
{"Rolling Averaged Population Magnitude", "50%"}
};
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。