代码拉取完成,页面将自动刷新
#!/usr/bin/env python
"""
nn_modules.py
"""
import torch
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
import numpy as np
from scipy import sparse
from helpers import to_numpy
# --
# Samplers
class UniformNeighborSampler(object):
"""
Samples from a "dense 2D edgelist", which looks like
[
[1, 2, 3, ..., 1],
[1, 3, 3, ..., 3],
...
]
stored as torch.LongTensor.
This relies on a preprocessing step where we sample _exactly_ K neighbors
for each node -- if the node has less than K neighbors, we upsample w/ replacement
and if the node has more than K neighbors, we downsample w/o replacement.
This seems like a "definitely wrong" thing to do -- but it runs pretty fast, and
I don't know what kind of degradation it causes in practice.
"""
def __init__(self, adj):
self.adj = adj
def __call__(self, ids, n_samples=-1):
tmp = self.adj[ids]
perm = torch.randperm(tmp.size(1))
if ids.is_cuda:
perm = perm.cuda()
tmp = tmp[:,perm]
return tmp[:,:n_samples]
class SparseUniformNeighborSampler(object):
"""
Samples from "sparse 2D edgelist", which looks like
[
[0, 0, 0, 0, ..., 0],
[1, 2, 3, 0, ..., 0],
[1, 3, 0, 0, ..., 0],
...
]
stored as a scipy.sparse.csr_matrix.
The first row is a "dummy node", so there's an "off-by-one" issue vs `feats`.
Have to increment/decrement by 1 in a couple of places. In the regular
uniform sampler, this "dummy node" is at the end.
Ideally, obviously, we'd be doing this sampling on the GPU. But it does not
appear that torch.sparse.LongTensor can support this ATM.
"""
def __init__(self, adj,):
assert sparse.issparse(adj), "SparseUniformNeighborSampler: not sparse.issparse(adj)"
self.adj = adj
idx, partial_degrees = np.unique(adj.nonzero()[0], return_counts=True)
self.degrees = np.zeros(adj.shape[0]).astype(int)
self.degrees[idx] = partial_degrees
def __call__(self, ids, n_samples=128):
assert n_samples > 0, 'SparseUniformNeighborSampler: n_samples must be set explicitly'
is_cuda = ids.is_cuda
ids = to_numpy(ids)
tmp = self.adj[ids]
sel = np.random.choice(self.adj.shape[1], (ids.shape[0], n_samples))
sel = sel % self.degrees[ids].reshape(-1, 1)
tmp = tmp[
np.arange(ids.shape[0]).repeat(n_samples).reshape(-1),
np.array(sel).reshape(-1)
]
tmp = np.asarray(tmp).squeeze()
tmp = Variable(torch.LongTensor(tmp))
if is_cuda:
tmp = tmp.cuda()
return tmp
sampler_lookup = {
"uniform_neighbor_sampler" : UniformNeighborSampler,
"sparse_uniform_neighbor_sampler" : SparseUniformNeighborSampler,
}
# --
# Preprocessers
class IdentityPrep(nn.Module):
def __init__(self, input_dim, n_nodes=None):
""" Example of preprocessor -- doesn't do anything """
super(IdentityPrep, self).__init__()
self.input_dim = input_dim
@property
def output_dim(self):
return self.input_dim
def forward(self, ids, feats, layer_idx=0):
return feats
class NodeEmbeddingPrep(nn.Module):
def __init__(self, input_dim, n_nodes, embedding_dim=64):
""" adds node embedding """
super(NodeEmbeddingPrep, self).__init__()
self.n_nodes = n_nodes
self.input_dim = input_dim
self.embedding_dim = embedding_dim
self.embedding = nn.Embedding(num_embeddings=n_nodes + 1, embedding_dim=embedding_dim)
self.fc = nn.Linear(embedding_dim, embedding_dim) # Affine transform, for changing scale + location
@property
def output_dim(self):
if self.input_dim:
return self.input_dim + self.embedding_dim
else:
return self.embedding_dim
def forward(self, ids, feats, layer_idx=0):
if layer_idx > 0:
embs = self.embedding(ids)
else:
# Don't look at node's own embedding for prediction, or you'll probably overfit a lot
embs = self.embedding(Variable(ids.clone().data.zero_() + self.n_nodes))
embs = self.fc(embs)
if self.input_dim:
return torch.cat([feats, embs], dim=1)
else:
return embs
class LinearPrep(nn.Module):
def __init__(self, input_dim, n_nodes, output_dim=32):
""" adds node embedding """
super(LinearPrep, self).__init__()
self.fc = nn.Linear(input_dim, output_dim, bias=False)
self.output_dim = output_dim
def forward(self, ids, feats, layer_idx=0):
return self.fc(feats)
prep_lookup = {
"identity" : IdentityPrep,
"node_embedding" : NodeEmbeddingPrep,
"linear" : LinearPrep,
}
# --
# Aggregators
class AggregatorMixin(object):
@property
def output_dim(self):
tmp = torch.zeros((1, self.output_dim_))
return self.combine_fn([tmp, tmp]).size(1)
class MeanAggregator(nn.Module, AggregatorMixin):
def __init__(self, input_dim, output_dim, activation, combine_fn=lambda x: torch.cat(x, dim=1)):
super(MeanAggregator, self).__init__()
self.fc_x = nn.Linear(input_dim, output_dim, bias=False)
self.fc_neib = nn.Linear(input_dim, output_dim, bias=False)
self.output_dim_ = output_dim
self.activation = activation
self.combine_fn = combine_fn
def forward(self, x, neibs):
agg_neib = neibs.view(x.size(0), -1, neibs.size(1)) # !! Careful
agg_neib = agg_neib.mean(dim=1) # Careful
out = self.combine_fn([self.fc_x(x), self.fc_neib(agg_neib)])
if self.activation:
out = self.activation(out)
return out
class PoolAggregator(nn.Module, AggregatorMixin):
def __init__(self, input_dim, output_dim, pool_fn, activation, hidden_dim=512, combine_fn=lambda x: torch.cat(x, dim=1)):
super(PoolAggregator, self).__init__()
self.mlp = nn.Sequential(*[
nn.Linear(input_dim, hidden_dim, bias=True),
nn.ReLU()
])
self.fc_x = nn.Linear(input_dim, output_dim, bias=False)
self.fc_neib = nn.Linear(hidden_dim, output_dim, bias=False)
self.output_dim_ = output_dim
self.activation = activation
self.pool_fn = pool_fn
self.combine_fn = combine_fn
def forward(self, x, neibs):
h_neibs = self.mlp(neibs)
agg_neib = h_neibs.view(x.size(0), -1, h_neibs.size(1))
agg_neib = self.pool_fn(agg_neib)
out = self.combine_fn([self.fc_x(x), self.fc_neib(agg_neib)])
if self.activation:
out = self.activation(out)
return out
class MaxPoolAggregator(PoolAggregator):
def __init__(self, input_dim, output_dim, activation, hidden_dim=512, combine_fn=lambda x: torch.cat(x, dim=1)):
super(MaxPoolAggregator, self).__init__(**{
"input_dim" : input_dim,
"output_dim" : output_dim,
"pool_fn" : lambda x: x.max(dim=1)[0],
"activation" : activation,
"hidden_dim" : hidden_dim,
"combine_fn" : combine_fn,
})
class MeanPoolAggregator(PoolAggregator):
def __init__(self, input_dim, output_dim, activation, hidden_dim=512, combine_fn=lambda x: torch.cat(x, dim=1)):
super(MeanPoolAggregator, self).__init__(**{
"input_dim" : input_dim,
"output_dim" : output_dim,
"pool_fn" : lambda x: x.mean(dim=1),
"activation" : activation,
"hidden_dim" : hidden_dim,
"combine_fn" : combine_fn,
})
class LSTMAggregator(nn.Module, AggregatorMixin):
def __init__(self, input_dim, output_dim, activation,
hidden_dim=512, bidirectional=False, combine_fn=lambda x: torch.cat(x, dim=1)):
super(LSTMAggregator, self).__init__()
assert not hidden_dim % 2, "LSTMAggregator: hiddem_dim % 2 != 0"
self.lstm = nn.LSTM(input_dim, hidden_dim // (1 + bidirectional), bidirectional=bidirectional, batch_first=True)
self.fc_x = nn.Linear(input_dim, output_dim, bias=False)
self.fc_neib = nn.Linear(hidden_dim, output_dim, bias=False)
self.output_dim_ = output_dim
self.activation = activation
self.combine_fn = combine_fn
def forward(self, x, neibs):
x_emb = self.fc_x(x)
agg_neib = neibs.view(x.size(0), -1, neibs.size(1))
agg_neib, _ = self.lstm(agg_neib)
agg_neib = agg_neib[:,-1,:] # !! Taking final state, but could do something better (eg attention)
neib_emb = self.fc_neib(agg_neib)
out = self.combine_fn([x_emb, neib_emb])
if self.activation:
out = self.activation(out)
return out
class AttentionAggregator(nn.Module, AggregatorMixin):
def __init__(self, input_dim, output_dim, activation, hidden_dim=32, combine_fn=lambda x: torch.cat(x, dim=1)):
super(AttentionAggregator, self).__init__()
self.att = nn.Sequential(*[
nn.Linear(input_dim, hidden_dim, bias=False),
nn.Tanh(),
nn.Linear(hidden_dim, hidden_dim, bias=False),
])
self.fc_x = nn.Linear(input_dim, output_dim, bias=False)
self.fc_neib = nn.Linear(input_dim, output_dim, bias=False)
self.output_dim_ = output_dim
self.activation = activation
self.combine_fn = combine_fn
def forward(self, x, neibs):
# Compute attention weights
neib_att = self.att(neibs)
x_att = self.att(x)
neib_att = neib_att.view(x.size(0), -1, neib_att.size(1))
x_att = x_att.view(x_att.size(0), x_att.size(1), 1)
ws = F.softmax(torch.bmm(neib_att, x_att).squeeze())
# Weighted average of neighbors
agg_neib = neibs.view(x.size(0), -1, neibs.size(1))
agg_neib = torch.sum(agg_neib * ws.unsqueeze(-1), dim=1)
out = self.combine_fn([self.fc_x(x), self.fc_neib(agg_neib)])
if self.activation:
out = self.activation(out)
return out
aggregator_lookup = {
"mean" : MeanAggregator,
"max_pool" : MaxPoolAggregator,
"mean_pool" : MeanPoolAggregator,
"lstm" : LSTMAggregator,
"attention" : AttentionAggregator,
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。