1 Star 2 Fork 2

计量经济学/tutorial-spatial-cross-section-columbus-crime

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
STATA_columbus.ipynb 58.79 KB
一键复制 编辑 原始数据 按行查看 历史
Carlos Mendez 提交于 4年前 . correct link

Spatial cross-section models: Application to crime data

DOI

Mendez C. (2021). Spatial econometrics for cross-sectional data: Columbus crime example. DOI: 10.5281/zenodo.5151076. Notebook available at https://deepnote.com/@carlos-mendez/STATA-Spatial-cross-section-00WMK3sKQl-z6oVRkTQgCQ

Roadmap

* Clean your environment
clear all
macro drop _all
set more off
*cls
*version 17
* Install packages: esttab, estadd, eststo, estout, estpost (http://repec.sowi.unibe.ch/stata/estout/index.html)
* net install st0085_2, from(http://www.stata-journal.com/software/sj14-2)
* ssc install estout, replace

Import W and data

* Import .dta weights matrix with spmatrix (official function from Stata15)
use "https://github.com/quarcs-lab/data-open/raw/master/Columbus/columbus/Wqueen_fromStata_spmat.dta", clear
gen id = _n
order id, first
spset id
spmatrix fromdata WqueenS_fromStata15 = v*, normalize(row) replace
spmatrix summarize WqueenS_fromStata15




      Sp dataset: Wqueen_fromStata_spmat.dta
Linked shapefile: <none>
            Data: Cross sectional
 Spatial-unit ID: _ID (equal to id)
     Coordinates: <none>



Weighting matrix WqueenS_fromStata15
---------------------------------------
           Type |           contiguity
  Normalization |                  row
      Dimension |              49 x 49
Elements        |
   minimum      |                    0
   minimum > 0  |                   .1
   mean         |             .0204082
   max          |                   .5
Neighbors       |
   minimum      |                    2
   mean         |             4.816327
   maximum      |                   10
---------------------------------------
* Import the dataset and set up the spatial id: https://geodacenter.github.io/data-and-lab/columbus/
use "https://github.com/quarcs-lab/data-open/raw/master/Columbus/columbus/columbusDbase.dta", clear
spset id


      Sp dataset: columbusDbase.dta
Linked shapefile: <none>
            Data: Cross sectional
 Spatial-unit ID: _ID (equal to id)
     Coordinates: <none>
label var CRIME "Crime"
label var INC   "Income"
label var HOVAL "House value"

OLS

regress CRIME INC HOVAL
eststo OLS

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

      Source |       SS           df       MS      Number of obs   =        49
-------------+----------------------------------   F(2, 46)        =     28.39
       Model |  7423.32674         2  3711.66337   Prob > F        =    0.0000
    Residual |  6014.89274        46  130.758538   R-squared       =    0.5524
-------------+----------------------------------   Adj R-squared   =    0.5329
       Total |  13438.2195        48  279.962906   Root MSE        =    11.435

------------------------------------------------------------------------------
       CRIME | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
         INC |  -1.597311   .3341308    -4.78   0.000    -2.269881   -.9247405
       HOVAL |  -.2739315   .1031987    -2.65   0.011    -.4816597   -.0662033
       _cons |   68.61896   4.735486    14.49   0.000     59.08692      78.151
------------------------------------------------------------------------------



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         OLS |         49  -207.0719  -187.3772       3   380.7545   386.4299
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.


Moran's I test

regress CRIME INC HOVAL
estat moran, errorlag(WqueenS_fromStata15)

      Source |       SS           df       MS      Number of obs   =        49
-------------+----------------------------------   F(2, 46)        =     28.39
       Model |  7423.32674         2  3711.66337   Prob > F        =    0.0000
    Residual |  6014.89274        46  130.758538   R-squared       =    0.5524
-------------+----------------------------------   Adj R-squared   =    0.5329
       Total |  13438.2195        48  279.962906   Root MSE        =    11.435

------------------------------------------------------------------------------
       CRIME | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
         INC |  -1.597311   .3341308    -4.78   0.000    -2.269881   -.9247405
       HOVAL |  -.2739315   .1031987    -2.65   0.011    -.4816597   -.0662033
       _cons |   68.61896   4.735486    14.49   0.000     59.08692      78.151
------------------------------------------------------------------------------


Moran test for spatial dependence
         H0: Error terms are i.i.d.
         Errorlags:  WqueenS_fromStata15

         chi2(1)      =     5.21
         Prob > chi2  =   0.0225

LM tests

spatwmat using "https://github.com/quarcs-lab/data-open/raw/master/Columbus/columbus/Wqueen_fromStata_spmat.dta", name(WqueenS_fromStata_spatwmat) eigenval(eWqueenS_fromStata_spatwmat) standardize

The following matrices have been created:

1. Imported binary weights matrix WqueenS_fromStata_spatwmat (row-standardized)
   Dimension: 49x49

2. Eigenvalues matrix eWqueenS_fromStata_spatwmat
   Dimension: 49x1


quietly reg CRIME INC HOVAL
spatdiag, weights(WqueenS_fromStata_spatwmat)



Diagnostic tests for spatial dependence in OLS regression
---------------------------------------------------------


Fitted model
------------------------------------------------------------
CRIME = INC + HOVAL
------------------------------------------------------------

Weights matrix
------------------------------------------------------------
Name: WqueenS_fromStata_spatwmat
Type: Imported (binary)
Row-standardized: Yes
------------------------------------------------------------

Diagnostics
------------------------------------------------------------
Test                           |  Statistic    df   p-value
-------------------------------+----------------------------
Spatial error:                 |
  Moran's I                    |     2.840      1    0.005
  Lagrange multiplier          |     5.206      1    0.023
  Robust Lagrange multiplier   |     0.044      1    0.834
                               |
Spatial lag:                   |
  Lagrange multiplier          |     8.898      1    0.003
  Robust Lagrange multiplier   |     3.736      1    0.053
------------------------------------------------------------


SAR

spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15)
eststo SAR

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood = -182.69106  
Iteration 1:   log likelihood = -182.67397  
Iteration 2:   log likelihood = -182.67397  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood = -182.67397  
Iteration 1:   log likelihood = -182.67397  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(3)  =  88.00
                                                        Prob > chi2   = 0.0000
Log likelihood = -182.67397                             Pseudo R2     = 0.5806

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -1.048728   .3304297    -3.17   0.002    -1.696359   -.4010978
        HOVAL |  -.2663348   .0888474    -3.00   0.003    -.4404725   -.0921971
        _cons |   45.60325   7.951826     5.73   0.000     30.01796    61.18854
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
        CRIME |   .4233254   .1255855     3.37   0.001     .1771824    .6694684
--------------+----------------------------------------------------------------
  var(e.CRIME)|   96.85718   19.77581                      64.91392    144.5193
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(1) = 11.36      Prob > chi2 = 0.0007



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         SAR |         49          .   -182.674       5   375.3479    384.807
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |  -1.100895   .3302446    -3.33   0.001    -1.748163   -.4536279
       HOVAL |  -.2795832   .0935004    -2.99   0.003    -.4628406   -.0963258
-------------+----------------------------------------------------------------
indirect     |
         INC |  -.7176833   .3163904    -2.27   0.023    -1.337797   -.0975695
       HOVAL |  -.1822627   .1083184    -1.68   0.092    -.3945629    .0300375
-------------+----------------------------------------------------------------
total        |
         INC |  -1.818579   .5115003    -3.56   0.000    -2.821101   -.8160566
       HOVAL |  -.4618459   .1818435    -2.54   0.011    -.8182526   -.1054393
------------------------------------------------------------------------------

SEM

spregress CRIME INC HOVAL, ml errorlag(WqueenS_fromStata15)
eststo SEM

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood = -183.79112  
Iteration 1:   log likelihood =  -183.7495  
Iteration 2:   log likelihood = -183.74943  
Iteration 3:   log likelihood = -183.74943  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood = -183.74943  
Iteration 1:   log likelihood = -183.74943  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(2)  =  30.15
                                                        Prob > chi2   = 0.0000
Log likelihood = -183.74943                             Pseudo R2     = 0.5362

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -.9573054   .3771546    -2.54   0.011    -1.696515   -.2180961
        HOVAL |  -.3045593   .0921607    -3.30   0.001    -.4851909   -.1239276
        _cons |   60.27947   5.904297    10.21   0.000     48.70726    71.85168
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
      e.CRIME |   .5467529   .1575357     3.47   0.001     .2379886    .8555173
--------------+----------------------------------------------------------------
  var(e.CRIME)|   97.67424   20.43916                      64.81252    147.1977
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(1) = 12.05      Prob > chi2 = 0.0005



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         SEM |         49          .  -183.7494       5   377.4989    386.958
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |  -.9573054   .3771546    -2.54   0.011    -1.696515   -.2180961
       HOVAL |  -.3045593   .0921607    -3.30   0.001    -.4851909   -.1239276
-------------+----------------------------------------------------------------
indirect     |
         INC |          0  (omitted)
       HOVAL |          0  (omitted)
-------------+----------------------------------------------------------------
total        |
         INC |  -.9573054   .3771546    -2.54   0.011    -1.696515   -.2180961
       HOVAL |  -.3045593   .0921607    -3.30   0.001    -.4851909   -.1239276
------------------------------------------------------------------------------

SLX

spregress CRIME INC HOVAL, ml ivarlag(WqueenS_fromStata15: INC HOVAL)
eststo SLX

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood =  -183.9706  
Iteration 1:   log likelihood =  -183.9706  

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(4)  =  76.80
                                                        Prob > chi2   = 0.0000
Log likelihood = -183.9706                              Pseudo R2     = 0.6105

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |   -1.09739   .3542451    -3.10   0.002    -1.791698   -.4030821
        HOVAL |  -.2943898   .0963324    -3.06   0.002    -.4831978   -.1055817
        _cons |   74.55343   6.363788    11.72   0.000     62.08063    87.02622
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
          INC |  -1.398746    .530778    -2.64   0.008    -2.439051   -.3584399
        HOVAL |    .214841   .1970276     1.09   0.276     -.171326    .6010079
--------------+----------------------------------------------------------------
  var(e.CRIME)|   106.8181    21.5805                      71.89125    158.7133
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(2) = 7.31       Prob > chi2 = 0.0259



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         SLX |         49          .  -183.9706       6   379.9412   391.2921
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |   -1.09739   .3542451    -3.10   0.002    -1.791698   -.4030821
       HOVAL |  -.2943898   .0963324    -3.06   0.002    -.4831978   -.1055817
-------------+----------------------------------------------------------------
indirect     |
         INC |  -1.398746    .530778    -2.64   0.008    -2.439051   -.3584399
       HOVAL |    .214841   .1970276     1.09   0.276     -.171326    .6010079
-------------+----------------------------------------------------------------
total        |
         INC |  -2.496136   .4671431    -5.34   0.000    -3.411719   -1.580552
       HOVAL |  -.0795488   .1966064    -0.40   0.686    -.4648903    .3057926
------------------------------------------------------------------------------

SDM

spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) ivarlag(WqueenS_fromStata15: INC HOVAL)
eststo SDM

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood = -181.63946  
Iteration 1:   log likelihood = -181.63926  
Iteration 2:   log likelihood = -181.63925  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood = -181.63925  
Iteration 1:   log likelihood = -181.63925  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(5)  =  93.47
                                                        Prob > chi2   = 0.0000
Log likelihood = -181.63925                             Pseudo R2     = 0.6120

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -.9199061   .3395439    -2.71   0.007      -1.5854   -.2544122
        HOVAL |  -.2971294   .0900249    -3.30   0.001     -.473575   -.1206838
        _cons |   44.32001   14.18338     3.12   0.002      16.5211    72.11892
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
          INC |  -.5839133   .6053402    -0.96   0.335    -1.770358    .6025317
        HOVAL |   .2576843   .1850135     1.39   0.164    -.1049356    .6203042
        CRIME |   .4034626   .1718368     2.35   0.019     .0666687    .7402564
--------------+----------------------------------------------------------------
  var(e.CRIME)|   93.27224   19.17105                      62.34442    139.5427
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(3) = 13.88      Prob > chi2 = 0.0031



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         SDM |         49          .  -181.6393       7   377.2785   390.5213
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |  -1.024988   .3241534    -3.16   0.002    -1.660317   -.3896588
       HOVAL |  -.2819673   .0911938    -3.09   0.002    -.4607038   -.1032309
-------------+----------------------------------------------------------------
indirect     |
         INC |  -1.495926   .6979787    -2.14   0.032    -2.863939   -.1279129
       HOVAL |    .215844   .2797595     0.77   0.440    -.3324746    .7641626
-------------+----------------------------------------------------------------
total        |
         INC |  -2.520914   .7319696    -3.44   0.001    -3.955548    -1.08628
       HOVAL |  -.0661233    .308123    -0.21   0.830    -.6700333    .5377866
------------------------------------------------------------------------------

Wald tests

Reduce to OLS?

spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) ivarlag(WqueenS_fromStata15: INC HOVAL)
* Wald test: Reduce to OLS? (NO if p < 0.05 of the spatial terms)
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood = -181.63946  
Iteration 1:   log likelihood = -181.63926  
Iteration 2:   log likelihood = -181.63925  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood = -181.63925  
Iteration 1:   log likelihood = -181.63925  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(5)  =  93.47
                                                        Prob > chi2   = 0.0000
Log likelihood = -181.63925                             Pseudo R2     = 0.6120

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -.9199061   .3395439    -2.71   0.007      -1.5854   -.2544122
        HOVAL |  -.2971294   .0900249    -3.30   0.001     -.473575   -.1206838
        _cons |   44.32001   14.18338     3.12   0.002      16.5211    72.11892
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
          INC |  -.5839133   .6053402    -0.96   0.335    -1.770358    .6025317
        HOVAL |   .2576843   .1850135     1.39   0.164    -.1049356    .6203042
        CRIME |   .4034626   .1718368     2.35   0.019     .0666687    .7402564
--------------+----------------------------------------------------------------
  var(e.CRIME)|   93.27224   19.17105                      62.34442    139.5427
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(3) = 13.88      Prob > chi2 = 0.0031

Reduce to SLX?

* Wald test: Reduce to SLX? (NO if p < 0.05)
test ([WqueenS_fromStata15]CRIME = 0)
 ( 1)  [WqueenS_fromStata15]CRIME = 0

           chi2(  1) =    5.51
         Prob > chi2 =    0.0189

Reduce to SAR?

* Wald test: Reduce to SAR? (NO if p < 0.05)
test ([WqueenS_fromStata15]INC = 0) ([WqueenS_fromStata15]HOVAL = 0)
 ( 1)  [WqueenS_fromStata15]INC = 0
 ( 2)  [WqueenS_fromStata15]HOVAL = 0

           chi2(  2) =    2.10
         Prob > chi2 =    0.3494

Reduce to SEM?

* Wald test: Reduce to SEM? (NO if p < 0.05)
testnl ([WqueenS_fromStata15]INC = -[WqueenS_fromStata15]CRIME*[CRIME]INC) ([WqueenS_fromStata15]HOVAL = -[WqueenS_fromStata15]CRIME*[CRIME]HOVAL)
  (1)  [WqueenS_fromStata15]INC = -[WqueenS_fromStata15]CRIME*[CRIME]INC
  (2)  [WqueenS_fromStata15]HOVAL = -[WqueenS_fromStata15]CRIME*[CRIME]HOVAL

               chi2(2) =        4.08
           Prob > chi2 =        0.1300

SDEM

spregress CRIME INC HOVAL, ml ivarlag(WqueenS_fromStata15: INC HOVAL) errorlag(WqueenS_fromStata15)
eststo SDEM

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood =  -181.7792  
Iteration 1:   log likelihood =   -181.779  
Iteration 2:   log likelihood =   -181.779  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood =   -181.779  
Iteration 1:   log likelihood =   -181.779  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(4)  =  46.68
                                                        Prob > chi2   = 0.0000
Log likelihood = -181.779                               Pseudo R2     = 0.6092

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -1.052259   .3233005    -3.25   0.001    -1.685916   -.4186011
        HOVAL |  -.2781741    .091165    -3.05   0.002    -.4568542    -.099494
        _cons |   73.64508   8.761175     8.41   0.000      56.4735    90.81667
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
          INC |  -1.204876   .5860084    -2.06   0.040    -2.353431   -.0563208
        HOVAL |   .1312451   .2111476     0.62   0.534    -.2825966    .5450868
      e.CRIME |   .4035821   .1773581     2.28   0.023     .0559666    .7511976
--------------+----------------------------------------------------------------
  var(e.CRIME)|    93.8033   19.30177                      62.67113    140.4005
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(3) = 12.03      Prob > chi2 = 0.0073



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
        SDEM |         49          .   -181.779       7    377.558   390.8007
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |  -1.052259   .3233005    -3.25   0.001    -1.685916   -.4186011
       HOVAL |  -.2781741    .091165    -3.05   0.002    -.4568542    -.099494
-------------+----------------------------------------------------------------
indirect     |
         INC |  -1.204876   .5860084    -2.06   0.040    -2.353431   -.0563208
       HOVAL |   .1312451   .2111476     0.62   0.534    -.2825966    .5450868
-------------+----------------------------------------------------------------
total        |
         INC |  -2.257135   .6515178    -3.46   0.001    -3.534086   -.9801833
       HOVAL |   -.146929   .2403654    -0.61   0.541    -.6180365    .3241785
------------------------------------------------------------------------------

SAC

spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) errorlag(WqueenS_fromStata15)
eststo SAC

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood = -182.57166  
Iteration 1:   log likelihood = -182.55505  
Iteration 2:   log likelihood = -182.55502  
Iteration 3:   log likelihood = -182.55502  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood = -182.55502  
Iteration 1:   log likelihood = -182.55502  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(3)  =  57.82
                                                        Prob > chi2   = 0.0000
Log likelihood = -182.55502                             Pseudo R2     = 0.5793

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -1.042749   .3357121    -3.11   0.002    -1.700733   -.3847656
        HOVAL |  -.2798409     .09405    -2.98   0.003    -.4641755   -.0955063
        _cons |   47.91536   9.298756     5.15   0.000     29.69013    66.14058
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
        CRIME |   .3693743   .1792524     2.06   0.039     .0180459    .7207026
      e.CRIME |   .1464169   .2997182     0.49   0.625      -.44102    .7338538
--------------+----------------------------------------------------------------
  var(e.CRIME)|   97.04344   19.77021                      65.09608    144.6697
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(2) = 10.63      Prob > chi2 = 0.0049



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         SAC |         49          .   -182.555       6     377.11    388.461
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |  -1.080454   .3399105    -3.18   0.001    -1.746666   -.4142414
       HOVAL |  -.2899596   .0958282    -3.03   0.002    -.4777794   -.1021397
-------------+----------------------------------------------------------------
indirect     |
         INC |  -.5730615   .4220918    -1.36   0.175    -1.400346    .2542232
       HOVAL |  -.1537916   .1161114    -1.32   0.185    -.3813657    .0737826
-------------+----------------------------------------------------------------
total        |
         INC |  -1.653515   .6169502    -2.68   0.007    -2.862715   -.4443151
       HOVAL |  -.4437511   .1749537    -2.54   0.011    -.7866542   -.1008481
------------------------------------------------------------------------------

GNS

spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) ivarlag(WqueenS_fromStata15: INC HOVAL) errorlag(WqueenS_fromStata15)
eststo GNS

estat ic
mat s=r(S)
quietly estadd scalar AIC = s[1,5]

estat impact
  (49 observations)
  (49 observations (places) used)
  (weighting matrix defines 49 places)

Performing grid search ... finished 

Optimizing concentrated log likelihood:

Iteration 0:   log likelihood = -181.60541  
Iteration 1:   log likelihood = -181.58046  
Iteration 2:   log likelihood = -181.58014  
Iteration 3:   log likelihood = -181.58014  

Optimizing unconcentrated log likelihood:

Iteration 0:   log likelihood = -181.58014  
Iteration 1:   log likelihood = -181.58014  (backed up)

Spatial autoregressive model                            Number of obs =     49
Maximum likelihood estimates                            Wald chi2(5)  =  62.57
                                                        Prob > chi2   = 0.0000
Log likelihood = -181.58014                             Pseudo R2     = 0.6115

-------------------------------------------------------------------------------
        CRIME | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------+----------------------------------------------------------------
CRIME         |
          INC |  -.9587964   .3565186    -2.69   0.007     -1.65756   -.2600328
        HOVAL |  -.2890341   .0924525    -3.13   0.002    -.4702378   -.1078305
        _cons |   53.04797    31.4573     1.69   0.092    -8.607201    114.7031
--------------+----------------------------------------------------------------
WqueenS_fr~15 |
          INC |  -.7734089   .8571065    -0.90   0.367    -2.453307     .906489
        HOVAL |   .2184638   .2304209     0.95   0.343    -.2331529    .6700806
        CRIME |    .284377   .4183839     0.68   0.497    -.5356404    1.104394
      e.CRIME |   .1632527   .4661928     0.35   0.726    -.7504684    1.076974
--------------+----------------------------------------------------------------
  var(e.CRIME)|   94.48532   19.32815                      63.27621    141.0874
-------------------------------------------------------------------------------
Wald test of spatial terms:          chi2(4) = 12.51      Prob > chi2 = 0.0139



Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
         GNS |         49          .  -181.5801       8   379.1603   394.2948
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.




progress   : 50% 100% 

Average impacts                                 Number of obs     =         49

------------------------------------------------------------------------------
             |            Delta-Method
             |      dy/dx   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
direct       |
         INC |  -1.032865   .3233102    -3.19   0.001    -1.666541   -.3991884
       HOVAL |  -.2793854    .091442    -3.06   0.002    -.4586084   -.1001624
-------------+----------------------------------------------------------------
indirect     |
         INC |  -1.387691   .7255571    -1.91   0.056    -2.809757    .0343749
       HOVAL |   .1807716   .2720029     0.66   0.506    -.3523444    .7138875
-------------+----------------------------------------------------------------
total        |
         INC |  -2.420556   .7598804    -3.19   0.001    -3.909894   -.9312175
       HOVAL |  -.0986138   .2989642    -0.33   0.742    -.6845729    .4873452
------------------------------------------------------------------------------

Comparison

%html
esttab OLS SAR SEM SLX SDM SDEM SAC GNS, label stats(AIC) mtitle("OLS" "SAR" "SEM" "SLX" "SDM" "SDEM" "SAC" "GNS") html

(1) (2) (3) (4) (5) (6) (7) (8)
OLS SAR SEM SLX SDM SDEM SAC GNS

main
Income -1.597*** -1.049** -0.957* -1.097** -0.920** -1.052** -1.043** -0.959**
(-4.78) (-3.17) (-2.54) (-3.10) (-2.71) (-3.25) (-3.11) (-2.69)
 
House value -0.274* -0.266** -0.305*** -0.294** -0.297*** -0.278** -0.280** -0.289**
(-2.65) (-3.00) (-3.30) (-3.06) (-3.30) (-3.05) (-2.98) (-3.13)
 
Constant 68.62*** 45.60*** 60.28*** 74.55*** 44.32** 73.65*** 47.92*** 53.05
(14.49) (5.73) (10.21) (11.72) (3.12) (8.41) (5.15) (1.69)

WqueenS_fromStata15
Crime 0.423*** 0.403* 0.369* 0.284
(3.37) (2.35) (2.06) (0.68)
 
e.Crime 0.547*** 0.404* 0.146 0.163
(3.47) (2.28) (0.49) (0.35)
 
Income -1.399** -0.584 -1.205* -0.773
(-2.64) (-0.96) (-2.06) (-0.90)
 
House value 0.215 0.258 0.131 0.218
(1.09) (1.39) (0.62) (0.95)

/
var(e.CRIME) 96.86*** 97.67*** 106.8*** 93.27*** 93.80*** 97.04*** 94.49***
(4.90) (4.78) (4.95) (4.87) (4.86) (4.91) (4.89)

AIC 380.8 375.3 377.5 379.9 377.3 377.6 377.1 379.2

t statistics in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001
eststo clear

The following comparison requires Stata 17. Caution is needed as the p-values are not shown

collect clear

quietly spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15)
collect: quietly estat impact

quietly spregress CRIME INC HOVAL, ml ivarlag(WqueenS_fromStata15: INC HOVAL)
collect: quietly estat impact

quietly spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) ivarlag(WqueenS_fromStata15: INC HOVAL)
collect: quietly estat impact

quietly spregress CRIME INC HOVAL, ml ivarlag(WqueenS_fromStata15: INC HOVAL) errorlag(WqueenS_fromStata15)
collect: quietly estat impact

quietly spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) errorlag(WqueenS_fromStata15)
collect: quietly estat impact

quietly spregress CRIME INC HOVAL, ml dvarlag(WqueenS_fromStata15) ivarlag(WqueenS_fromStata15: INC HOVAL) errorlag(WqueenS_fromStata15)
collect: quietly estat impact


collect label list cmdset, all
collect style autolevels result b_direct b_indirect  
collect label levels cmdset 1 "SAR" 2 "SLX" 3 "SDM" 4 "SDEM" 5 "SAC" 6 "GNS"
collect style cell, nformat(%7.2f)
collect layout (colname#result) (cmdset) 














  Collection: default
   Dimension: cmdset
       Label: Command results index
Level labels:
           1  
           2  
           3  
           4  
           5  
           6  





Collection: default
      Rows: colname#result
   Columns: cmdset
   Table 1: 6 x 6

--------------------------------------------------
             |   SAR   SLX   SDM  SDEM   SAC   GNS
-------------+------------------------------------
Income       |                                    
  b_direct   | -1.10 -1.10 -1.02 -1.05 -1.08 -1.03
  b_indirect | -0.72 -1.40 -1.50 -1.20 -0.57 -1.39
House value  |                                    
  b_direct   | -0.28 -0.29 -0.28 -0.28 -0.29 -0.28
  b_indirect | -0.18  0.21  0.22  0.13 -0.15  0.18
--------------------------------------------------
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/econometric/tutorial-spatial-cross-section-columbus-crime.git
git@gitee.com:econometric/tutorial-spatial-cross-section-columbus-crime.git
econometric
tutorial-spatial-cross-section-columbus-crime
tutorial-spatial-cross-section-columbus-crime
main

搜索帮助