代码拉取完成,页面将自动刷新
#!/usr/bin/env python
import argparse
import os
import sys
import torch
import torch.nn as nn
import datasets
import models.resnet as ResNet
import models.senet as SENet
from trainer import Trainer, Validator
from extractor import Extractor
import utils
configurations = {
1: dict(
max_iteration=1000000,
lr=1.0e-1,
momentum=0.9,
weight_decay=0.0,
gamma=0.1, # "lr_policy: step"
step_size=1000000, # "lr_policy: step"
interval_validate=1000,
),
}
def get_parameters(model, bias=False):
for k, m in model._modules.items():
if k == "fc" and isinstance(m, nn.Linear):
if bias:
yield m.bias
else:
yield m.weight
N_IDENTITY = 8631 # the number of identities in VGGFace2 for which ResNet and SENet are trained
def main():
parser = argparse.ArgumentParser("PyTorch Face Recognizer")
parser.add_argument('cmd', type=str, choices=['train', 'test', 'extract'], help='train, test or extract')
parser.add_argument('--arch_type', type=str, default='resnet50_ft', help='model type',
choices=['resnet50_ft', 'senet50_ft', 'resnet50_scratch', 'senet50_scratch'])
parser.add_argument('--dataset_dir', type=str, default='/path/to/dataset_directory', help='dataset directory')
parser.add_argument('--log_file', type=str, default='/path/to/log_file', help='log file')
parser.add_argument('--train_img_list_file', type=str, default='/path/to/train_image_list.txt',
help='text file containing image files used for training')
parser.add_argument('--test_img_list_file', type=str, default='/path/to/test_image_list.txt',
help='text file containing image files used for validation, test or feature extraction')
parser.add_argument('--meta_file', type=str, default='/path/to/identity_meta.csv', help='meta file')
parser.add_argument('--checkpoint_dir', type=str, default='/path/to/checkpoint_directory',
help='checkpoints directory')
parser.add_argument('--feature_dir', type=str, default='/path/to/feature_directory',
help='directory where extracted features are saved')
parser.add_argument('-c', '--config', type=int, default=1, choices=configurations.keys(),
help='the number of settings and hyperparameters used in training')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--resume', type=str, default='', help='checkpoint file')
parser.add_argument('--weight_file', type=str, default='/path/to/weight_file.pkl', help='weight file')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--horizontal_flip', action='store_true',
help='horizontally flip images specified in test_img_list_file')
args = parser.parse_args()
print(args)
if args.cmd == "extract":
utils.create_dir(args.feature_dir)
if args.cmd == 'train':
utils.create_dir(args.checkpoint_dir)
cfg = configurations[args.config]
log_file = args.log_file
resume = args.resume
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
cuda = torch.cuda.is_available()
if cuda:
print("torch.backends.cudnn.version: {}".format(torch.backends.cudnn.version()))
torch.manual_seed(1337)
if cuda:
torch.cuda.manual_seed(1337)
# 0. id label map
meta_file = args.meta_file
id_label_dict = utils.get_id_label_map(meta_file)
# 1. data loader
root = args.dataset_dir
train_img_list_file = args.train_img_list_file
test_img_list_file = args.test_img_list_file
kwargs = {'num_workers': args.workers, 'pin_memory': True} if cuda else {}
if args.cmd == 'train':
dt = datasets.VGG_Faces2(root, train_img_list_file, id_label_dict, split='train')
train_loader = torch.utils.data.DataLoader(dt, batch_size=args.batch_size, shuffle=True, **kwargs)
dv = datasets.VGG_Faces2(root, test_img_list_file, id_label_dict, split='valid',
horizontal_flip=args.horizontal_flip)
val_loader = torch.utils.data.DataLoader(dv, batch_size=args.batch_size, shuffle=False, **kwargs)
# 2. model
include_top = True if args.cmd != 'extract' else False
if 'resnet' in args.arch_type:
model = ResNet.resnet50(num_classes=N_IDENTITY, include_top=include_top)
else:
model = SENet.senet50(num_classes=N_IDENTITY, include_top=include_top)
# print(model)
start_epoch = 0
start_iteration = 0
if resume:
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint['epoch']
start_iteration = checkpoint['iteration']
assert checkpoint['arch'] == args.arch_type
print("Resume from epoch: {}, iteration: {}".format(start_epoch, start_iteration))
else:
utils.load_state_dict(model, args.weight_file)
if args.cmd == 'train':
model.fc.reset_parameters()
if cuda:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
if cuda:
criterion = criterion.cuda()
# 3. optimizer
if args.cmd == 'train':
optim = torch.optim.SGD(
[
{'params': get_parameters(model, bias=False)},
{'params': get_parameters(model, bias=True), 'lr': cfg['lr'] * 2, 'weight_decay': 0},
],
lr=cfg['lr'],
momentum=cfg['momentum'],
weight_decay=cfg['weight_decay'])
if resume:
optim.load_state_dict(checkpoint['optim_state_dict'])
# lr_policy: step
last_epoch = start_iteration if resume else -1
lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, cfg['step_size'],
gamma=cfg['gamma'], last_epoch=last_epoch)
if args.cmd == 'train':
trainer = Trainer(
cmd=args.cmd,
cuda=cuda,
model=model,
criterion=criterion,
optimizer=optim,
lr_scheduler=lr_scheduler,
train_loader=train_loader,
val_loader=val_loader,
log_file=log_file,
max_iter=cfg['max_iteration'],
checkpoint_dir=args.checkpoint_dir,
print_freq=1,
)
trainer.epoch = start_epoch
trainer.iteration = start_iteration
trainer.train()
elif args.cmd == 'test':
validator = Validator(
cmd=args.cmd,
cuda=cuda,
model=model,
criterion=criterion,
val_loader=val_loader,
log_file=log_file,
print_freq=1,
)
validator.validate()
elif args.cmd == 'extract':
extractor = Extractor(
cuda=cuda,
model=model,
val_loader=val_loader,
log_file=log_file,
feature_dir=args.feature_dir,
flatten_feature=True,
print_freq=1,
)
extractor.extract()
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。