代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
import torch
from model2 import MobileNetV2, BlazeLandMark
coefficient = 0.25
print(coefficient)
num_of_channels = [int(64 * coefficient), int(128 * coefficient), int(16 * coefficient), int(32 * coefficient),
int(128 * coefficient)]
# model = MobileNetV2(num_of_channels=num_of_channels, nums_class=136)
model = BlazeLandMark(nums_class=136)
path = './model_37.pth'
dst = './pfld_37.onnx'
model = torch.load(path)
x = torch.rand(1, 3, 56, 56).cuda()
torch_out = torch.onnx._export(model, x, dst, export_params=True)
import onnx
print("==> Loading and checking exported model from '{}'".format(dst))
onnx_model = onnx.load(dst)
onnx.checker.check_model(onnx_model) # assuming throw on error
print("==> Passed")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。