代码拉取完成,页面将自动刷新
"""Get the binarized MNIST dataset and convert to hdf5.
From https://github.com/yburda/iwae/blob/master/datasets.py
"""
import urllib.request
import os
import numpy as np
import h5py
def parse_binary_mnist(data_dir):
def lines_to_np_array(lines):
return np.array([[int(i) for i in line.split()] for line in lines])
with open(os.path.join(data_dir, 'binarized_mnist_train.amat')) as f:
lines = f.readlines()
train_data = lines_to_np_array(lines).astype('float32')
with open(os.path.join(data_dir, 'binarized_mnist_valid.amat')) as f:
lines = f.readlines()
validation_data = lines_to_np_array(lines).astype('float32')
with open(os.path.join(data_dir, 'binarized_mnist_test.amat')) as f:
lines = f.readlines()
test_data = lines_to_np_array(lines).astype('float32')
return train_data, validation_data, test_data
def download_binary_mnist(fname):
data_dir = '/tmp/'
subdatasets = ['train', 'valid', 'test']
for subdataset in subdatasets:
filename = 'binarized_mnist_{}.amat'.format(subdataset)
url = 'http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_{}.amat'.format(
subdataset)
local_filename = os.path.join(data_dir, filename)
urllib.request.urlretrieve(url, local_filename)
train, validation, test = parse_binary_mnist(data_dir)
data_dict = {'train': train, 'valid': validation, 'test': test}
f = h5py.File(fname, 'w')
f.create_dataset('train', data=data_dict['train'])
f.create_dataset('valid', data=data_dict['valid'])
f.create_dataset('test', data=data_dict['test'])
f.close()
print(f'Saved binary MNIST data to: {fname}')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。