1 Star 0 Fork 0

GhMa/variational-autoencoder

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train_variational_autoencoder_pytorch.py 9.44 KB
一键复制 编辑 原始数据 按行查看 历史
"""Fit a variational autoencoder to MNIST.
Notes:
- run https://github.com/altosaar/proximity_vi/blob/master/get_binary_mnist.py to download binary MNIST file
- batch size is the innermost dimension, then the sample dimension, then latent dimension
"""
import torch
import torch.utils
import torch.utils.data
from torch import nn
import nomen
import yaml
import numpy as np
import logging
import pathlib
import h5py
import random
import data
import flow
config = """
latent_size: 128
variational: flow
flow_depth: 2
data_size: 784
learning_rate: 0.001
batch_size: 128
test_batch_size: 512
max_iterations: 100000
log_interval: 10000
early_stopping_interval: 5
n_samples: 128
use_gpu: true
train_dir: $TMPDIR
data_dir: $TMPDIR
seed: 582838
"""
class Model(nn.Module):
"""Bernoulli model parameterized by a generative network with Gaussian latents for MNIST."""
def __init__(self, latent_size, data_size):
super().__init__()
self.register_buffer('p_z_loc', torch.zeros(latent_size))
self.register_buffer('p_z_scale', torch.ones(latent_size))
self.log_p_z = NormalLogProb()
self.log_p_x = BernoulliLogProb()
self.generative_network = NeuralNetwork(input_size=latent_size,
output_size=data_size,
hidden_size=latent_size * 2)
def forward(self, z, x):
"""Return log probability of model."""
log_p_z = self.log_p_z(self.p_z_loc, self.p_z_scale, z).sum(-1, keepdim=True)
logits = self.generative_network(z)
# unsqueeze sample dimension
logits, x = torch.broadcast_tensors(logits, x.unsqueeze(1))
log_p_x = self.log_p_x(logits, x).sum(-1, keepdim=True)
return log_p_z + log_p_x
class VariationalMeanField(nn.Module):
"""Approximate posterior parameterized by an inference network."""
def __init__(self, latent_size, data_size):
super().__init__()
self.inference_network = NeuralNetwork(input_size=data_size,
output_size=latent_size * 2,
hidden_size=latent_size*2)
self.log_q_z = NormalLogProb()
self.softplus = nn.Softplus()
def forward(self, x, n_samples=1):
"""Return sample of latent variable and log prob."""
loc, scale_arg = torch.chunk(self.inference_network(x).unsqueeze(1), chunks=2, dim=-1)
scale = self.softplus(scale_arg)
eps = torch.randn((loc.shape[0], n_samples, loc.shape[-1]), device=loc.device)
z = loc + scale * eps # reparameterization
log_q_z = self.log_q_z(loc, scale, z).sum(-1, keepdim=True)
return z, log_q_z
class VariationalFlow(nn.Module):
"""Approximate posterior parameterized by a flow (https://arxiv.org/abs/1606.04934)."""
def __init__(self, latent_size, data_size, flow_depth):
super().__init__()
hidden_size = latent_size * 2
self.inference_network = NeuralNetwork(input_size=data_size,
# loc, scale, and context
output_size=latent_size * 3,
hidden_size=hidden_size)
modules = []
for _ in range(flow_depth):
modules.append(flow.InverseAutoregressiveFlow(num_input=latent_size,
num_hidden=hidden_size,
num_context=latent_size))
modules.append(flow.Reverse(latent_size))
self.q_z_flow = flow.FlowSequential(*modules)
self.log_q_z_0 = NormalLogProb()
self.softplus = nn.Softplus()
def forward(self, x, n_samples=1):
"""Return sample of latent variable and log prob."""
loc, scale_arg, h = torch.chunk(self.inference_network(x).unsqueeze(1), chunks=3, dim=-1)
scale = self.softplus(scale_arg)
eps = torch.randn((loc.shape[0], n_samples, loc.shape[-1]), device=loc.device)
z_0 = loc + scale * eps # reparameterization
log_q_z_0 = self.log_q_z_0(loc, scale, z_0)
z_T, log_q_z_flow = self.q_z_flow(z_0, context=h)
log_q_z = (log_q_z_0 + log_q_z_flow).sum(-1, keepdim=True)
return z_T, log_q_z
class NeuralNetwork(nn.Module):
def __init__(self, input_size, output_size, hidden_size):
super().__init__()
modules = [nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, output_size)]
self.net = nn.Sequential(*modules)
def forward(self, input):
return self.net(input)
class NormalLogProb(nn.Module):
def __init__(self):
super().__init__()
def forward(self, loc, scale, z):
var = torch.pow(scale, 2)
return -0.5 * torch.log(2 * np.pi * var) - torch.pow(z - loc, 2) / (2 * var)
class BernoulliLogProb(nn.Module):
def __init__(self):
super().__init__()
self.bce_with_logits = nn.BCEWithLogitsLoss(reduction='none')
def forward(self, logits, target):
# bernoulli log prob is equivalent to negative binary cross entropy
return -self.bce_with_logits(logits, target)
def cycle(iterable):
while True:
for x in iterable:
yield x
def load_binary_mnist(cfg, **kwcfg):
fname = cfg.data_dir / 'binary_mnist.h5'
if not fname.exists():
print('Downloading binary MNIST data...')
data.download_binary_mnist(fname)
f = h5py.File(pathlib.os.path.join(pathlib.os.environ['DAT'], 'binary_mnist.h5'), 'r')
x_train = f['train'][::]
x_val = f['valid'][::]
x_test = f['test'][::]
train = torch.utils.data.TensorDataset(torch.from_numpy(x_train))
train_loader = torch.utils.data.DataLoader(train, batch_size=cfg.batch_size, shuffle=True, **kwcfg)
validation = torch.utils.data.TensorDataset(torch.from_numpy(x_val))
val_loader = torch.utils.data.DataLoader(validation, batch_size=cfg.test_batch_size, shuffle=False)
test = torch.utils.data.TensorDataset(torch.from_numpy(x_test))
test_loader = torch.utils.data.DataLoader(test, batch_size=cfg.test_batch_size, shuffle=False)
return train_loader, val_loader, test_loader
def evaluate(n_samples, model, variational, eval_data):
model.eval()
total_log_p_x = 0.0
total_elbo = 0.0
for batch in eval_data:
x = batch[0].to(next(model.parameters()).device)
z, log_q_z = variational(x, n_samples)
log_p_x_and_z = model(z, x)
# importance sampling of approximate marginal likelihood with q(z)
# as the proposal, and logsumexp in the sample dimension
elbo = log_p_x_and_z - log_q_z
log_p_x = torch.logsumexp(elbo, dim=1) - np.log(n_samples)
# average over sample dimension, sum over minibatch
total_elbo += elbo.cpu().numpy().mean(1).sum()
# sum over minibatch
total_log_p_x += log_p_x.cpu().numpy().sum()
n_data = len(eval_data.dataset)
return total_elbo / n_data, total_log_p_x / n_data
if __name__ == '__main__':
dictionary = yaml.load(config)
cfg = nomen.Config(dictionary)
cfg.parse_args()
device = torch.device("cuda:0" if cfg.use_gpu else "cpu")
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
model = Model(latent_size=cfg.latent_size,
data_size=cfg.data_size)
if cfg.variational == 'flow':
variational = VariationalFlow(latent_size=cfg.latent_size,
data_size=cfg.data_size,
flow_depth=cfg.flow_depth)
elif cfg.variational == 'mean-field':
variational = VariationalMeanField(latent_size=cfg.latent_size,
data_size=cfg.data_size)
else:
raise ValueError('Variational distribution not implemented: %s' % cfg.variational)
model.to(device)
variational.to(device)
optimizer = torch.optim.RMSprop(list(model.parameters()) +
list(variational.parameters()),
lr=cfg.learning_rate,
centered=True)
kwargs = {'num_workers': 4, 'pin_memory': True} if cfg.use_gpu else {}
train_data, valid_data, test_data = load_binary_mnist(cfg, **kwargs)
best_valid_elbo = -np.inf
num_no_improvement = 0
for step, batch in enumerate(cycle(train_data)):
x = batch[0].to(device)
model.zero_grad()
variational.zero_grad()
z, log_q_z = variational(x, n_samples=1)
log_p_x_and_z = model(z, x)
# average over sample dimension
elbo = (log_p_x_and_z - log_q_z).mean(1)
# sum over batch dimension
loss = -elbo.sum(0)
loss.backward()
optimizer.step()
if step % cfg.log_interval == 0:
print(f'step:\t{step}\ttrain elbo: {elbo.detach().cpu().numpy().mean():.2f}')
with torch.no_grad():
valid_elbo, valid_log_p_x = evaluate(cfg.n_samples, model, variational, valid_data)
print(f'step:\t{step}\t\tvalid elbo: {valid_elbo:.2f}\tvalid log p(x): {valid_log_p_x:.2f}')
if valid_elbo > best_valid_elbo:
num_no_improvement = 0
best_valid_elbo = valid_elbo
states = {'model': model.state_dict(),
'variational': variational.state_dict()}
torch.save(states, cfg.train_dir / 'best_state_dict')
else:
num_no_improvement += 1
if num_no_improvement > cfg.early_stopping_interval:
checkpoint = torch.load(cfg.train_dir / 'best_state_dict')
model.load_state_dict(checkpoint['model'])
variational.load_state_dict(checkpoint['variational'])
with torch.no_grad():
test_elbo, test_log_p_x = evaluate(cfg.n_samples, model, variational, test_data)
print(f'step:\t{step}\t\ttest elbo: {test_elbo:.2f}\ttest log p(x): {test_log_p_x:.2f}')
break
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ghma/variational-autoencoder.git
git@gitee.com:ghma/variational-autoencoder.git
ghma
variational-autoencoder
variational-autoencoder
master

搜索帮助