代码拉取完成,页面将自动刷新
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package thrift
import (
"bufio"
"bytes"
"compress/zlib"
"context"
"encoding/binary"
"errors"
"fmt"
"io"
)
// Size in bytes for 32-bit ints.
const size32 = 4
type headerMeta struct {
MagicFlags uint32
SequenceID int32
HeaderLength uint16
}
const headerMetaSize = 10
type clientType int
const (
clientUnknown clientType = iota
clientHeaders
clientFramedBinary
clientUnframedBinary
clientFramedCompact
clientUnframedCompact
)
// Constants defined in THeader format:
// https://github.com/apache/thrift/blob/master/doc/specs/HeaderFormat.md
const (
THeaderHeaderMagic uint32 = 0x0fff0000
THeaderHeaderMask uint32 = 0xffff0000
THeaderFlagsMask uint32 = 0x0000ffff
THeaderMaxFrameSize uint32 = 0x3fffffff
)
// THeaderMap is the type of the header map in THeader transport.
type THeaderMap map[string]string
// THeaderProtocolID is the wrapped protocol id used in THeader.
type THeaderProtocolID int32
// Supported THeaderProtocolID values.
const (
THeaderProtocolBinary THeaderProtocolID = 0x00
THeaderProtocolCompact THeaderProtocolID = 0x02
THeaderProtocolDefault = THeaderProtocolBinary
)
// Declared globally to avoid repetitive allocations, not really used.
var globalMemoryBuffer = NewTMemoryBuffer()
// Validate checks whether the THeaderProtocolID is a valid/supported one.
func (id THeaderProtocolID) Validate() error {
_, err := id.GetProtocol(globalMemoryBuffer)
return err
}
// GetProtocol gets the corresponding TProtocol from the wrapped protocol id.
func (id THeaderProtocolID) GetProtocol(trans TTransport) (TProtocol, error) {
switch id {
default:
return nil, NewTApplicationException(
INVALID_PROTOCOL,
fmt.Sprintf("THeader protocol id %d not supported", id),
)
case THeaderProtocolBinary:
return NewTBinaryProtocolTransport(trans), nil
case THeaderProtocolCompact:
return NewTCompactProtocol(trans), nil
}
}
// THeaderTransformID defines the numeric id of the transform used.
type THeaderTransformID int32
// THeaderTransformID values.
//
// Values not defined here are not currently supported, namely HMAC and Snappy.
const (
TransformNone THeaderTransformID = iota // 0, no special handling
TransformZlib // 1, zlib
)
var supportedTransformIDs = map[THeaderTransformID]bool{
TransformNone: true,
TransformZlib: true,
}
// TransformReader is an io.ReadCloser that handles transforms reading.
type TransformReader struct {
io.Reader
closers []io.Closer
}
var _ io.ReadCloser = (*TransformReader)(nil)
// NewTransformReaderWithCapacity initializes a TransformReader with expected
// closers capacity.
//
// If you don't know the closers capacity beforehand, just use
//
// &TransformReader{Reader: baseReader}
//
// instead would be sufficient.
func NewTransformReaderWithCapacity(baseReader io.Reader, capacity int) *TransformReader {
return &TransformReader{
Reader: baseReader,
closers: make([]io.Closer, 0, capacity),
}
}
// Close calls the underlying closers in appropriate order,
// stops at and returns the first error encountered.
func (tr *TransformReader) Close() error {
// Call closers in reversed order
for i := len(tr.closers) - 1; i >= 0; i-- {
if err := tr.closers[i].Close(); err != nil {
return err
}
}
return nil
}
// AddTransform adds a transform.
func (tr *TransformReader) AddTransform(id THeaderTransformID) error {
switch id {
default:
return NewTApplicationException(
INVALID_TRANSFORM,
fmt.Sprintf("THeaderTransformID %d not supported", id),
)
case TransformNone:
// no-op
case TransformZlib:
readCloser, err := zlib.NewReader(tr.Reader)
if err != nil {
return err
}
tr.Reader = readCloser
tr.closers = append(tr.closers, readCloser)
}
return nil
}
// TransformWriter is an io.WriteCloser that handles transforms writing.
type TransformWriter struct {
io.Writer
closers []io.Closer
}
var _ io.WriteCloser = (*TransformWriter)(nil)
// NewTransformWriter creates a new TransformWriter with base writer and transforms.
func NewTransformWriter(baseWriter io.Writer, transforms []THeaderTransformID) (io.WriteCloser, error) {
writer := &TransformWriter{
Writer: baseWriter,
closers: make([]io.Closer, 0, len(transforms)),
}
for _, id := range transforms {
if err := writer.AddTransform(id); err != nil {
return nil, err
}
}
return writer, nil
}
// Close calls the underlying closers in appropriate order,
// stops at and returns the first error encountered.
func (tw *TransformWriter) Close() error {
// Call closers in reversed order
for i := len(tw.closers) - 1; i >= 0; i-- {
if err := tw.closers[i].Close(); err != nil {
return err
}
}
return nil
}
// AddTransform adds a transform.
func (tw *TransformWriter) AddTransform(id THeaderTransformID) error {
switch id {
default:
return NewTApplicationException(
INVALID_TRANSFORM,
fmt.Sprintf("THeaderTransformID %d not supported", id),
)
case TransformNone:
// no-op
case TransformZlib:
writeCloser := zlib.NewWriter(tw.Writer)
tw.Writer = writeCloser
tw.closers = append(tw.closers, writeCloser)
}
return nil
}
// THeaderInfoType is the type id of the info headers.
type THeaderInfoType int32
// Supported THeaderInfoType values.
const (
_ THeaderInfoType = iota // Skip 0
InfoKeyValue // 1
// Rest of the info types are not supported.
)
// THeaderTransport is a Transport mode that implements THeader.
//
// Note that THeaderTransport handles frame and zlib by itself,
// so the underlying transport should be a raw socket transports (TSocket or TSSLSocket),
// instead of rich transports like TZlibTransport or TFramedTransport.
type THeaderTransport struct {
SequenceID int32
Flags uint32
transport TTransport
// THeaderMap for read and write
readHeaders THeaderMap
writeHeaders THeaderMap
// Reading related variables.
reader *bufio.Reader
// When frame is detected, we read the frame fully into frameBuffer.
frameBuffer bytes.Buffer
// When it's non-nil, Read should read from frameReader instead of
// reader, and EOF error indicates end of frame instead of end of all
// transport.
frameReader io.ReadCloser
// Writing related variables
writeBuffer bytes.Buffer
writeTransforms []THeaderTransformID
clientType clientType
protocolID THeaderProtocolID
cfg *TConfiguration
// buffer is used in the following scenarios to avoid repetitive
// allocations, while 4 is big enough for all those scenarios:
//
// * header padding (max size 4)
// * write the frame size (size 4)
buffer [4]byte
}
var _ TTransport = (*THeaderTransport)(nil)
// Deprecated: Use NewTHeaderTransportConf instead.
func NewTHeaderTransport(trans TTransport) *THeaderTransport {
return NewTHeaderTransportConf(trans, &TConfiguration{
noPropagation: true,
})
}
// NewTHeaderTransportConf creates THeaderTransport from the
// underlying transport, with given TConfiguration attached.
//
// If trans is already a *THeaderTransport, it will be returned as is,
// but with TConfiguration overridden by the value passed in.
//
// The protocol ID in TConfiguration is only useful for client transports.
// For servers,
// the protocol ID will be overridden again to the one set by the client,
// to ensure that servers always speak the same dialect as the client.
func NewTHeaderTransportConf(trans TTransport, conf *TConfiguration) *THeaderTransport {
if ht, ok := trans.(*THeaderTransport); ok {
ht.SetTConfiguration(conf)
return ht
}
PropagateTConfiguration(trans, conf)
return &THeaderTransport{
transport: trans,
reader: bufio.NewReader(trans),
writeHeaders: make(THeaderMap),
protocolID: conf.GetTHeaderProtocolID(),
cfg: conf,
}
}
// Open calls the underlying transport's Open function.
func (t *THeaderTransport) Open() error {
return t.transport.Open()
}
// IsOpen calls the underlying transport's IsOpen function.
func (t *THeaderTransport) IsOpen() bool {
return t.transport.IsOpen()
}
// ReadFrame tries to read the frame header, guess the client type, and handle
// unframed clients.
func (t *THeaderTransport) ReadFrame(ctx context.Context) error {
if !t.needReadFrame() {
// No need to read frame, skipping.
return nil
}
// Peek and handle the first 32 bits.
// They could either be the length field of a framed message,
// or the first bytes of an unframed message.
var buf []byte
var err error
// This is also usually the first read from a connection,
// so handle retries around socket timeouts.
_, deadlineSet := ctx.Deadline()
for {
buf, err = t.reader.Peek(size32)
if deadlineSet && isTimeoutError(err) && ctx.Err() == nil {
// This is I/O timeout and we still have time,
// continue trying
continue
}
// For anything else, do not retry
break
}
if err != nil {
return err
}
frameSize := binary.BigEndian.Uint32(buf)
if frameSize&VERSION_MASK == VERSION_1 {
t.clientType = clientUnframedBinary
return nil
}
if buf[0] == COMPACT_PROTOCOL_ID && buf[1]&COMPACT_VERSION_MASK == COMPACT_VERSION {
t.clientType = clientUnframedCompact
return nil
}
// At this point it should be a framed message,
// sanity check on frameSize then discard the peeked part.
if frameSize > THeaderMaxFrameSize || frameSize > uint32(t.cfg.GetMaxFrameSize()) {
return NewTProtocolExceptionWithType(
SIZE_LIMIT,
errors.New("frame too large"),
)
}
t.reader.Discard(size32)
// Read the frame fully into frameBuffer.
_, err = io.CopyN(&t.frameBuffer, t.reader, int64(frameSize))
if err != nil {
return err
}
t.frameReader = io.NopCloser(&t.frameBuffer)
// Peek and handle the next 32 bits.
buf = t.frameBuffer.Bytes()[:size32]
version := binary.BigEndian.Uint32(buf)
if version&THeaderHeaderMask == THeaderHeaderMagic {
t.clientType = clientHeaders
return t.parseHeaders(ctx, frameSize)
}
if version&VERSION_MASK == VERSION_1 {
t.clientType = clientFramedBinary
return nil
}
if buf[0] == COMPACT_PROTOCOL_ID && buf[1]&COMPACT_VERSION_MASK == COMPACT_VERSION {
t.clientType = clientFramedCompact
return nil
}
if err := t.endOfFrame(); err != nil {
return err
}
return NewTProtocolExceptionWithType(
NOT_IMPLEMENTED,
errors.New("unsupported client transport type"),
)
}
// endOfFrame does end of frame handling.
//
// It closes frameReader, and also resets frame related states.
func (t *THeaderTransport) endOfFrame() error {
defer func() {
t.frameBuffer.Reset()
t.frameReader = nil
}()
return t.frameReader.Close()
}
func (t *THeaderTransport) parseHeaders(ctx context.Context, frameSize uint32) error {
if t.clientType != clientHeaders {
return nil
}
var err error
var meta headerMeta
if err = binary.Read(&t.frameBuffer, binary.BigEndian, &meta); err != nil {
return err
}
frameSize -= headerMetaSize
t.Flags = meta.MagicFlags & THeaderFlagsMask
t.SequenceID = meta.SequenceID
headerLength := int64(meta.HeaderLength) * 4
if int64(frameSize) < headerLength {
return NewTProtocolExceptionWithType(
SIZE_LIMIT,
errors.New("header size is larger than the whole frame"),
)
}
headerBuf := NewTMemoryBuffer()
_, err = io.CopyN(headerBuf, &t.frameBuffer, headerLength)
if err != nil {
return err
}
hp := NewTCompactProtocol(headerBuf)
hp.SetTConfiguration(t.cfg)
// At this point the header is already read into headerBuf,
// and t.frameBuffer starts from the actual payload.
protoID, err := hp.readVarint32()
if err != nil {
return err
}
t.protocolID = THeaderProtocolID(protoID)
var transformCount int32
transformCount, err = hp.readVarint32()
if err != nil {
return err
}
if transformCount > 0 {
reader := NewTransformReaderWithCapacity(
&t.frameBuffer,
int(transformCount),
)
t.frameReader = reader
transformIDs := make([]THeaderTransformID, transformCount)
for i := 0; i < int(transformCount); i++ {
id, err := hp.readVarint32()
if err != nil {
return err
}
transformIDs[i] = THeaderTransformID(id)
}
// The transform IDs on the wire was added based on the order of
// writing, so on the reading side we need to reverse the order.
for i := transformCount - 1; i >= 0; i-- {
id := transformIDs[i]
if err := reader.AddTransform(id); err != nil {
return err
}
}
}
// The info part does not use the transforms yet, so it's
// important to continue using headerBuf.
headers := make(THeaderMap)
for {
infoType, err := hp.readVarint32()
if errors.Is(err, io.EOF) {
break
}
if err != nil {
return err
}
if THeaderInfoType(infoType) == InfoKeyValue {
count, err := hp.readVarint32()
if err != nil {
return err
}
for i := 0; i < int(count); i++ {
key, err := hp.ReadString(ctx)
if err != nil {
return err
}
value, err := hp.ReadString(ctx)
if err != nil {
return err
}
headers[key] = value
}
} else {
// Skip reading info section on the first
// unsupported info type.
break
}
}
t.readHeaders = headers
return nil
}
func (t *THeaderTransport) needReadFrame() bool {
if t.clientType == clientUnknown {
// This is a new connection that's never read before.
return true
}
if t.isFramed() && t.frameReader == nil {
// We just finished the last frame.
return true
}
return false
}
func (t *THeaderTransport) Read(p []byte) (read int, err error) {
// Here using context.Background instead of a context passed in is safe.
// First is that there's no way to pass context into this function.
// Then, 99% of the case when calling this Read frame is already read
// into frameReader. ReadFrame here is more of preventing bugs that
// didn't call ReadFrame before calling Read.
err = t.ReadFrame(context.Background())
if err != nil {
return
}
if t.frameReader != nil {
read, err = t.frameReader.Read(p)
if err == nil && t.frameBuffer.Len() <= 0 {
// the last Read finished the frame, do endOfFrame
// handling here.
err = t.endOfFrame()
} else if err == io.EOF {
err = t.endOfFrame()
if err != nil {
return
}
if read == 0 {
// Try to read the next frame when we hit EOF
// (end of frame) immediately.
// When we got here, it means the last read
// finished the previous frame, but didn't
// do endOfFrame handling yet.
// We have to read the next frame here,
// as otherwise we would return 0 and nil,
// which is a case not handled well by most
// protocol implementations.
return t.Read(p)
}
}
return
}
return t.reader.Read(p)
}
// Write writes data to the write buffer.
//
// You need to call Flush to actually write them to the transport.
func (t *THeaderTransport) Write(p []byte) (int, error) {
return t.writeBuffer.Write(p)
}
// Flush writes the appropriate header and the write buffer to the underlying transport.
func (t *THeaderTransport) Flush(ctx context.Context) error {
if t.writeBuffer.Len() == 0 {
return nil
}
defer t.writeBuffer.Reset()
switch t.clientType {
default:
fallthrough
case clientUnknown:
t.clientType = clientHeaders
fallthrough
case clientHeaders:
headers := NewTMemoryBuffer()
hp := NewTCompactProtocol(headers)
hp.SetTConfiguration(t.cfg)
if _, err := hp.writeVarint32(int32(t.protocolID)); err != nil {
return NewTTransportExceptionFromError(err)
}
if _, err := hp.writeVarint32(int32(len(t.writeTransforms))); err != nil {
return NewTTransportExceptionFromError(err)
}
for _, transform := range t.writeTransforms {
if _, err := hp.writeVarint32(int32(transform)); err != nil {
return NewTTransportExceptionFromError(err)
}
}
if len(t.writeHeaders) > 0 {
if _, err := hp.writeVarint32(int32(InfoKeyValue)); err != nil {
return NewTTransportExceptionFromError(err)
}
if _, err := hp.writeVarint32(int32(len(t.writeHeaders))); err != nil {
return NewTTransportExceptionFromError(err)
}
for key, value := range t.writeHeaders {
if err := hp.WriteString(ctx, key); err != nil {
return NewTTransportExceptionFromError(err)
}
if err := hp.WriteString(ctx, value); err != nil {
return NewTTransportExceptionFromError(err)
}
}
}
padding := 4 - headers.Len()%4
if padding < 4 {
buf := t.buffer[:padding]
for i := range buf {
buf[i] = 0
}
if _, err := headers.Write(buf); err != nil {
return NewTTransportExceptionFromError(err)
}
}
var payload bytes.Buffer
meta := headerMeta{
MagicFlags: THeaderHeaderMagic + t.Flags&THeaderFlagsMask,
SequenceID: t.SequenceID,
HeaderLength: uint16(headers.Len() / 4),
}
if err := binary.Write(&payload, binary.BigEndian, meta); err != nil {
return NewTTransportExceptionFromError(err)
}
if _, err := io.Copy(&payload, headers); err != nil {
return NewTTransportExceptionFromError(err)
}
writer, err := NewTransformWriter(&payload, t.writeTransforms)
if err != nil {
return NewTTransportExceptionFromError(err)
}
if _, err := io.Copy(writer, &t.writeBuffer); err != nil {
return NewTTransportExceptionFromError(err)
}
if err := writer.Close(); err != nil {
return NewTTransportExceptionFromError(err)
}
// First write frame length
buf := t.buffer[:size32]
binary.BigEndian.PutUint32(buf, uint32(payload.Len()))
if _, err := t.transport.Write(buf); err != nil {
return NewTTransportExceptionFromError(err)
}
// Then write the payload
if _, err := io.Copy(t.transport, &payload); err != nil {
return NewTTransportExceptionFromError(err)
}
case clientFramedBinary, clientFramedCompact:
buf := t.buffer[:size32]
binary.BigEndian.PutUint32(buf, uint32(t.writeBuffer.Len()))
if _, err := t.transport.Write(buf); err != nil {
return NewTTransportExceptionFromError(err)
}
fallthrough
case clientUnframedBinary, clientUnframedCompact:
if _, err := io.Copy(t.transport, &t.writeBuffer); err != nil {
return NewTTransportExceptionFromError(err)
}
}
select {
default:
case <-ctx.Done():
return NewTTransportExceptionFromError(ctx.Err())
}
return t.transport.Flush(ctx)
}
// Close closes the transport, along with its underlying transport.
func (t *THeaderTransport) Close() error {
if err := t.Flush(context.Background()); err != nil {
return err
}
return t.transport.Close()
}
// RemainingBytes calls underlying transport's RemainingBytes.
//
// Even in framed cases, because of all the possible compression transforms
// involved, the remaining frame size is likely to be different from the actual
// remaining readable bytes, so we don't bother to keep tracking the remaining
// frame size by ourselves and just use the underlying transport's
// RemainingBytes directly.
func (t *THeaderTransport) RemainingBytes() uint64 {
return t.transport.RemainingBytes()
}
// GetReadHeaders returns the THeaderMap read from transport.
func (t *THeaderTransport) GetReadHeaders() THeaderMap {
return t.readHeaders
}
// SetWriteHeader sets a header for write.
func (t *THeaderTransport) SetWriteHeader(key, value string) {
t.writeHeaders[key] = value
}
// ClearWriteHeaders clears all write headers previously set.
func (t *THeaderTransport) ClearWriteHeaders() {
t.writeHeaders = make(THeaderMap)
}
// AddTransform add a transform for writing.
func (t *THeaderTransport) AddTransform(transform THeaderTransformID) error {
if !supportedTransformIDs[transform] {
return NewTProtocolExceptionWithType(
NOT_IMPLEMENTED,
fmt.Errorf("THeaderTransformID %d not supported", transform),
)
}
t.writeTransforms = append(t.writeTransforms, transform)
return nil
}
// Protocol returns the wrapped protocol id used in this THeaderTransport.
func (t *THeaderTransport) Protocol() THeaderProtocolID {
switch t.clientType {
default:
return t.protocolID
case clientFramedBinary, clientUnframedBinary:
return THeaderProtocolBinary
case clientFramedCompact, clientUnframedCompact:
return THeaderProtocolCompact
}
}
func (t *THeaderTransport) isFramed() bool {
switch t.clientType {
default:
return false
case clientHeaders, clientFramedBinary, clientFramedCompact:
return true
}
}
// SetTConfiguration implements TConfigurationSetter.
func (t *THeaderTransport) SetTConfiguration(cfg *TConfiguration) {
PropagateTConfiguration(t.transport, cfg)
t.cfg = cfg
}
// THeaderTransportFactory is a TTransportFactory implementation to create
// THeaderTransport.
//
// It also implements TConfigurationSetter.
type THeaderTransportFactory struct {
// The underlying factory, could be nil.
Factory TTransportFactory
cfg *TConfiguration
}
// Deprecated: Use NewTHeaderTransportFactoryConf instead.
func NewTHeaderTransportFactory(factory TTransportFactory) TTransportFactory {
return NewTHeaderTransportFactoryConf(factory, &TConfiguration{
noPropagation: true,
})
}
// NewTHeaderTransportFactoryConf creates a new *THeaderTransportFactory with
// the given *TConfiguration.
func NewTHeaderTransportFactoryConf(factory TTransportFactory, conf *TConfiguration) TTransportFactory {
return &THeaderTransportFactory{
Factory: factory,
cfg: conf,
}
}
// GetTransport implements TTransportFactory.
func (f *THeaderTransportFactory) GetTransport(trans TTransport) (TTransport, error) {
if f.Factory != nil {
t, err := f.Factory.GetTransport(trans)
if err != nil {
return nil, err
}
return NewTHeaderTransportConf(t, f.cfg), nil
}
return NewTHeaderTransportConf(trans, f.cfg), nil
}
// SetTConfiguration implements TConfigurationSetter.
func (f *THeaderTransportFactory) SetTConfiguration(cfg *TConfiguration) {
PropagateTConfiguration(f.Factory, f.cfg)
f.cfg = cfg
}
var (
_ TConfigurationSetter = (*THeaderTransportFactory)(nil)
_ TConfigurationSetter = (*THeaderTransport)(nil)
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。