1 Star 1 Fork 0

郭少强/deeplearning-note

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
0_datasets
1_ducumentation
2_tutorials
3_ETRI-lecture
4_wavenet
5_campsule_net
6_tensorflow_10weeks
08_dimensionality_reduction.ipynb
BERT.ipynb
BERT.md
CIFAR-10.py
CNN.md
Computational_Imageing.md
Datasets.md
Encoder.md
GAN.md
Image Data Augmentation with Keras.ipynb
Image Data Augmentation with Keras.py
Intel_VNNI.md
LLM.md
MLOps.md
ModelTransfer.md
README.md
RL.md
Sentiment_Analysis.md
TPUs.md
VideoSR.md
ai_game.md
bc.md
biology.md
blackbox.md
cifar100.py
code.md
cv-sat.md
deep-geometry.md
deeplearning_open-book.md
diffusion.md
download_glue.py
edge.md
espnet.md
facetensor.py
find_better.py
gpu.md
horovod.md
install_cudnn.md
install_tensorflow.md
jetson-nano.md
jetson.md
keras-bert-toxic-model-bert-fine-tuning-with-keras.ipynb
knlp.md
korean-한국어.md
label.md
lstm.ipynb
medicine.md
modelConvert.md
mudi.md
network.md
nlp.md
paper.md
per.py
pipelind.md
process.md
quantum.md
scrape-line-stamp.py
service.md
sin.py
sound.md
stck.ipynb
step.md
superresolution.md
text_classification.py
tf.distribute.Strategy.py
transformer.md
tts.md
txt2imgd.py
vDB.md
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
CIFAR-10.py 993 Bytes
一键复制 编辑 原始数据 按行查看 历史
Mario Cho 提交于 3年前 . Update CIFAR-10.py
import torch
import numpy as np
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset,DataLoader
import torchvision.datasets as dsets
import matplotlib.pyplot as plt
batch_size = 800
train_data = dsets.CIFAR10(root='./cifar-10', train=True, download=False, transform=transforms.Compose([transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.RandomErasing(p=0.5, scale=(0.02, 0.4), ratio=(0.33, 3.0))]))
train_loader = DataLoader(train_data,batch_size=batch_size,shuffle=True)
test_data = dsets.CIFAR10(root='./cifar-10', train=False, download=False, transform=transforms.Compose([transforms.ToTensor(),]))
test_loader = DataLoader(test_data,batch_size=batch_size,shuffle=False)
def image_show(data_loader,n):
tmp = iter(data_loader)
images,labels = tmp.next()
images = images.numpy()
for i in range(n):
image = np.transpose(images[i],[1,2,0])
plt.imshow(image)
plt.show()
image_show(train_loader,10)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/guo_shaoqiang/deeplearning-note.git
git@gitee.com:guo_shaoqiang/deeplearning-note.git
guo_shaoqiang
deeplearning-note
deeplearning-note
master

搜索帮助