代码拉取完成,页面将自动刷新
from keras.datasets import cifar100
import numpy as np
from keras.models import load_model
import sys
def image_format(X):
X = np.swapaxes(X,0,2)
X = np.swapaxes(X,0,1)
return X
def get_processed_data():
X, y = get_data()
return process_data(X), y
def get_data():
(X_train, y_train), (X_test, y_test) = cifar100.load_data()
return X_test, y_test
def process_data(X):
X = X.astype('float32')
X -= 128
X /= 128
X = np.transpose(X, (0,3,1,2))
return X
def find_good_image(model, X, y):
rand_indices = np.random.shuffle(np.arange(len(y)))
X_shuff, y_shuff = X[rand_indices], y[rand_indices]
y_ = model.predict(X)
skip=0
for i in range(len(y)):
if y[i] == np.argmax(y_[i]):
if skip==0:
skip += 1
continue
print "Found a good image!"
return image_format(X[i]), np.argmax(y_[i])
if __name__ == "__main__":
model = load_model(sys.argv[1])
X, y = get_processed_data()
image, label = find_good_image(model, X, y)
np.save("good_image-" + str(label), image)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。