1 Star 0 Fork 0

xiong/LLMTuner

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
chat_qlora.py 3.51 KB
一键复制 编辑 原始数据 按行查看 历史
zejunwang1 提交于 2年前 . support baichuan-7b
# coding=utf-8
import argparse
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
def main(args):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
#load_in_4bit=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
trust_remote_code=True
)
model = PeftModel.from_pretrained(model, args.adapter_name_or_path)
model.to(device)
model.eval()
print("基于bloom-qlora的聊天机器人, clear清空历史对话, quit/stop退出")
input_pattern = "{}</s>"
history = []
if args.multi_round:
while True:
text = input("用户: ")
if text == "stop" or text == "quit":
break
if text == "clear":
history = []
continue
history += tokenizer(input_pattern.format(text)).input_ids
history = history[-args.history_max_tokens:]
input_ids = torch.tensor([history], device=device)
outputs = model.generate(
input_ids=input_ids,
do_sample=True,
top_p=args.top_p,
top_k=args.top_k,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=args.repetition_penalty
)
input_ids_len = input_ids.size(1)
response_ids = outputs[0][input_ids_len: ]
response = tokenizer.decode(response_ids)
print("Assistant: {}\n".format(response.strip().replace("</s>", "")))
history += response_ids.tolist()
history += [tokenizer.eos_token_id]
else:
while True:
text = input("用户: ")
if text == "stop" or text == "quit":
break
input_ids = tokenizer(input_pattern.format(text), return_tensors="pt").input_ids
input_ids = input_ids.to(device)
outputs = model.generate(
input_ids=input_ids,
do_sample=True,
top_p=args.top_p,
top_k=args.top_k,
temperature=args.temperature,
max_new_tokens=args.max_new_tokens,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=args.repetition_penalty
)
input_ids_len = input_ids.size(1)
response_ids = outputs[0][input_ids_len: ]
response = tokenizer.decode(response_ids)
print("Assistant: {}\n".format(response.strip().replace("</s>", "")))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", required=True, type=str)
parser.add_argument("--adapter_name_or_path", required=True, type=str)
parser.add_argument("--max_new_tokens", type=int, default=768)
parser.add_argument("--top_p", type=float, default=0.85)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.3)
parser.add_argument("--repetition_penalty", type=float, default=1.2)
parser.add_argument("--multi_round", action="store_true")
parser.add_argument("--history_max_tokens", type=int, default=1024)
args = parser.parse_args()
main(args)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/hacker_xwj/LLMTuner.git
git@gitee.com:hacker_xwj/LLMTuner.git
hacker_xwj
LLMTuner
LLMTuner
main

搜索帮助