代码拉取完成,页面将自动刷新
import pandas as pd
# import geopandas
import plotly.express as px
import numpy as np
import json
with open("china_province.geojson") as f:
provinces_map = json.load(f)
df = pd.read_csv('data.csv')
df.确诊 = df.确诊.map(np.log)
fig = px.choropleth_mapbox(
df,
geojson=provinces_map,
# color=f"{selected_radio}区间",
color='确诊',
locations="地区",
featureidkey="properties.NL_NAME_1",
mapbox_style="carto-darkmatter",
# color_discrete_map={
# "0": colorscales[selected_radio][0],
# "1-9": colorscales[selected_radio][1],
# "10-99": colorscales[selected_radio][2],
# "100-499": colorscales[selected_radio][3],
# "500-999": colorscales[selected_radio][4],
# "1000-9999": colorscales[selected_radio][5],
# "10000+": colorscales[selected_radio][6],
# },
# category_orders={f"{selected_radio}区间": labels},
color_continuous_scale='viridis',
center={"lat": 37.110573, "lon": 106.493924},
zoom=3,
# hover_name="地区",
# hover_data=["确诊", "疑似", "治愈", "死亡"],
)
# fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。