import numpy as np
import os
import librosa
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Input, Activation,Reshape,MaxPooling2D, Dropout, Conv2D, MaxPool2D, Flatten
We will use the dataset containing real and fake audio of well known people from https://www.kaggle.com/datasets/birdy654/deep-voice-deepfake-voice-recognition
The dataset is available under MIT License.
Download the Audio folder from above URL and save it with folder name "AudioClassification". It contains two sub folders - FAKE and REAL containing fake and real audio files respectively. Also download two files under the folder 'DEMONSTRATION' to test our audio classifier. These files are named as 'linus-original-DEMO.mp3' and 'linus-to-musk-DEMO.mp3', they contain original voice of Linus and voice of Linus converted to that of Elon Musk.
The code given here is inspired by the solutions to DEEP-VOICE: DeepFake Voice Recognition at Kaggle.com (https://www.kaggle.com/datasets/birdy654/deep-voice-deepfake-voice-recognition)
The below code was implemented in Jupyter Notebook under Anaconda 3 Python Distribution (Python 3.11.9) on a Windows 11 PC.
# this code loads Real and Fake audio files dataset
paths = [] #list of audio file paths (both real and fake)
# Label of each audio file is the name of folder it is in (REAL or FAKE)
labels = []# list of labels corresponding to each audio
# Define the path of folder containing audio files
audio_dir = 'AudioClassification\Audio'
#Subfolder containing real audio samples
real_audio_path = 'REAL'
#Subfolder containing fake audio samples
fake_audio_path = 'FAKE'
#for all subfolders in audio_dir we store the file name of each file in it and the corresponding label
for dir in os.listdir(audio_dir):
dir_path = os.path.join(audio_dir, dir)
if os.path.isdir(dir_path):
for filename in os.listdir(dir_path):
file_path = os.path.join(dir_path, filename)
paths.append(file_path)
labels.append(dir)
#let us see the subfolders in audio_dir
folders = os.listdir(audio_path)
print("The audio directory has following folders:", folders)
paths_and_labels = pd.DataFrame({'path': paths, 'label': labels} )
paths_and_labels.head(64)
The audio directory has following folders: ['FAKE', 'REAL']
path | label | |
---|---|---|
0 | AudioClassification\Audio\FAKE\biden-to-linus.wav | FAKE |
1 | AudioClassification\Audio\FAKE\biden-to-margot... | FAKE |
2 | AudioClassification\Audio\FAKE\biden-to-musk.wav | FAKE |
3 | AudioClassification\Audio\FAKE\biden-to-Obama.wav | FAKE |
4 | AudioClassification\Audio\FAKE\biden-to-ryan.wav | FAKE |
... | ... | ... |
59 | AudioClassification\Audio\REAL\musk-original.wav | REAL |
60 | AudioClassification\Audio\REAL\obama-original.wav | REAL |
61 | AudioClassification\Audio\REAL\ryan-original.wav | REAL |
62 | AudioClassification\Audio\REAL\taylor-original... | REAL |
63 | AudioClassification\Audio\REAL\trump-original.wav | REAL |
64 rows × 2 columns
# Let us plot the mel-spectrogram a real audio musk-original.wav and that of the mel-spectrogram corresponding fake (voice converted) audio musk-original.wav using librosa library
real_audio = "AudioClassification\Audio\REAL\musk-original.wav"
fake_audio = "AudioClassification\Audio\FAKE\musk-to-obama.wav"
real_ad, real_sr = librosa.load(real_audio)
fake_ad, fake_sr = librosa.load(fake_audio)
real_mel_spect = librosa.feature.melspectrogram(y=real_ad, sr=real_sr)
real_mel_spect = librosa.power_to_db(real_mel_spect, ref=np.max)
fake_mel_spect = librosa.feature.melspectrogram(y=fake_ad, sr=fake_sr)
fake_mel_spect = librosa.power_to_db(fake_mel_spect, ref=np.max)
# Create a figure with two subplots
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 8))
im1 = ax1.imshow(real_mel_spect, origin='lower', aspect='auto', cmap='magma')
#librosa.display.specshow(real_mel_spect, y_axis="mel", x_axis="time", ax=ax1)
ax1.set_title("Mel Spectogram of original audio")
plt.colorbar(im1, ax = ax1,format="%+2.0f dB")
ax1.set_xlabel("Time")
ax1.set_ylabel("Frequency")
im2 = ax2.imshow(fake_mel_spect, origin='lower', aspect='auto', cmap='magma')
#librosa.display.specshow(fake_mel_spect, y_axis="mel", x_axis="time", ax = ax2)
ax2.set_title("Mel Spectogram of fake (voice converted) audio")
plt.colorbar(im2,ax= ax2, format="%+2.0f dB")
ax2.set_xlabel("Time")
ax2.set_ylabel("Frequency")
plt.tight_layout()
plt.show()
# This function extracts Mel-Frequency Cepstral Coefficients as features from each audio sample
# The Python library librosa is used to extract the features
def extract_mfcc_features(audio_path, max_length=1000):
features = []
labels = []
for folder in os.listdir(audio_path):
folder_path = os.path.join(audio_path, folder)
for file in os.listdir(folder_path):
file_path = os.path.join(folder_path, file)
try:
# Load audio file
audio, _ = librosa.load(file_path, sr=16000)
# Extract features (example: using Mel-Frequency Cepstral Coefficients)
mfccs = librosa.feature.mfcc(y=audio, sr=16000, n_mfcc=100)
# Pad or trim the feature array to a fixed length
if mfccs.shape[1] < max_length:
mfccs = np.pad(mfccs, ((0, 0), (0, max_length - mfccs.shape[1])), mode='constant')
else:
mfccs = mfccs[:, :max_length]
features.append(mfccs)
# Assign label
if folder == 'FAKE':
labels.append(1) # 1 for fake
else:
labels.append(0) # 0 for real
except Exception as e:
print(f"Error encountered while parsing file: {file_path}")
continue
return np.array(features), np.array(labels)
# We call extract_features() function to extract features from our audio files
audio_path = 'AudioClassification/Audio'
X, y = extract_mfcc_features(audio_path)
Features shape: (64, 40, 500) Labels shape: (64,)
print("Features shape:", X.shape)
print("Labels shape:", y.shape)
Features shape: (64, 100, 1000) Labels shape: (64,)
# Let us split the features set and labels into train and test portions
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
model = Sequential()
model.add(Input(shape = (X_train.shape[1:])))
model.add(Reshape((100,1000,1)))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(GlobalAveragePooling2D())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
history = model.fit(X_train, y_train, epochs = 500, batch_size = 32, validation_data = [X_test,y_test])
Epoch 1/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m2s[0m 503ms/step - accuracy: 0.9034 - loss: 0.3085 - val_accuracy: 0.7692 - val_loss: 0.6877 Epoch 2/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 0.9034 - loss: 0.3122 - val_accuracy: 0.7692 - val_loss: 0.6825 Epoch 3/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 376ms/step - accuracy: 0.8930 - loss: 0.3244 - val_accuracy: 0.7692 - val_loss: 0.6153 Epoch 4/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 362ms/step - accuracy: 0.8930 - loss: 0.3157 - val_accuracy: 0.7692 - val_loss: 0.6430 Epoch 5/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 359ms/step - accuracy: 0.8930 - loss: 0.2762 - val_accuracy: 0.7692 - val_loss: 0.7461 Epoch 6/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 361ms/step - accuracy: 0.8930 - loss: 0.3406 - val_accuracy: 0.7692 - val_loss: 0.7646 Epoch 7/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 376ms/step - accuracy: 0.9138 - loss: 0.2723 - val_accuracy: 0.7692 - val_loss: 0.7369 Epoch 8/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 425ms/step - accuracy: 0.9034 - loss: 0.3199 - val_accuracy: 0.7692 - val_loss: 0.6360 Epoch 9/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9138 - loss: 0.3413 - val_accuracy: 0.7692 - val_loss: 0.5835 Epoch 10/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9269 - loss: 0.2769 - val_accuracy: 0.7692 - val_loss: 0.5992 Epoch 11/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 351ms/step - accuracy: 0.8903 - loss: 0.2623 - val_accuracy: 0.7692 - val_loss: 0.6663 Epoch 12/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 371ms/step - accuracy: 0.9034 - loss: 0.2909 - val_accuracy: 0.7692 - val_loss: 0.7234 Epoch 13/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 364ms/step - accuracy: 0.9034 - loss: 0.3446 - val_accuracy: 0.7692 - val_loss: 0.7299 Epoch 14/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 360ms/step - accuracy: 0.9138 - loss: 0.2282 - val_accuracy: 0.7692 - val_loss: 0.6912 Epoch 15/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 376ms/step - accuracy: 0.8826 - loss: 0.3458 - val_accuracy: 0.7692 - val_loss: 0.6512 Epoch 16/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 359ms/step - accuracy: 0.8930 - loss: 0.2619 - val_accuracy: 0.7692 - val_loss: 0.6617 Epoch 17/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 359ms/step - accuracy: 0.9138 - loss: 0.2516 - val_accuracy: 0.7692 - val_loss: 0.7171 Epoch 18/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 344ms/step - accuracy: 0.9034 - loss: 0.2894 - val_accuracy: 0.7692 - val_loss: 0.7278 Epoch 19/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 359ms/step - accuracy: 0.9165 - loss: 0.3514 - val_accuracy: 0.7692 - val_loss: 0.6845 Epoch 20/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 360ms/step - accuracy: 0.9138 - loss: 0.2612 - val_accuracy: 0.7692 - val_loss: 0.6578 Epoch 21/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 365ms/step - accuracy: 0.9269 - loss: 0.2860 - val_accuracy: 0.7692 - val_loss: 0.6293 Epoch 22/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 359ms/step - accuracy: 0.9165 - loss: 0.3048 - val_accuracy: 0.7692 - val_loss: 0.6171 Epoch 23/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9034 - loss: 0.2947 - val_accuracy: 0.7692 - val_loss: 0.6198 Epoch 24/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 361ms/step - accuracy: 0.8930 - loss: 0.3300 - val_accuracy: 0.7692 - val_loss: 0.6302 Epoch 25/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9034 - loss: 0.2779 - val_accuracy: 0.7692 - val_loss: 0.6632 Epoch 26/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 409ms/step - accuracy: 0.8930 - loss: 0.3030 - val_accuracy: 0.7692 - val_loss: 0.6863 Epoch 27/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 406ms/step - accuracy: 0.9138 - loss: 0.2593 - val_accuracy: 0.7692 - val_loss: 0.6863 Epoch 28/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 415ms/step - accuracy: 0.9034 - loss: 0.2688 - val_accuracy: 0.7692 - val_loss: 0.6398 Epoch 29/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9007 - loss: 0.2989 - val_accuracy: 0.7692 - val_loss: 0.6161 Epoch 30/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 0.9165 - loss: 0.2797 - val_accuracy: 0.7692 - val_loss: 0.6302 Epoch 31/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 429ms/step - accuracy: 0.9242 - loss: 0.2545 - val_accuracy: 0.7692 - val_loss: 0.6696 Epoch 32/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 413ms/step - accuracy: 0.9242 - loss: 0.2202 - val_accuracy: 0.7692 - val_loss: 0.6877 Epoch 33/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 418ms/step - accuracy: 0.9034 - loss: 0.2324 - val_accuracy: 0.7692 - val_loss: 0.6781 Epoch 34/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 444ms/step - accuracy: 0.9060 - loss: 0.2973 - val_accuracy: 0.7692 - val_loss: 0.6593 Epoch 35/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 437ms/step - accuracy: 0.8930 - loss: 0.3136 - val_accuracy: 0.7692 - val_loss: 0.6518 Epoch 36/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 456ms/step - accuracy: 0.8930 - loss: 0.2679 - val_accuracy: 0.7692 - val_loss: 0.6554 Epoch 37/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 425ms/step - accuracy: 0.9034 - loss: 0.2548 - val_accuracy: 0.7692 - val_loss: 0.6752 Epoch 38/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 424ms/step - accuracy: 0.9165 - loss: 0.2392 - val_accuracy: 0.7692 - val_loss: 0.6749 Epoch 39/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 408ms/step - accuracy: 0.9034 - loss: 0.2701 - val_accuracy: 0.7692 - val_loss: 0.6567 Epoch 40/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9138 - loss: 0.2641 - val_accuracy: 0.7692 - val_loss: 0.6343 Epoch 41/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 407ms/step - accuracy: 0.9165 - loss: 0.2687 - val_accuracy: 0.7692 - val_loss: 0.6156 Epoch 42/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9165 - loss: 0.2407 - val_accuracy: 0.7692 - val_loss: 0.6535 Epoch 43/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 0.9269 - loss: 0.2628 - val_accuracy: 0.7692 - val_loss: 0.6692 Epoch 44/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9373 - loss: 0.2321 - val_accuracy: 0.7692 - val_loss: 0.6519 Epoch 45/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 384ms/step - accuracy: 0.9138 - loss: 0.2173 - val_accuracy: 0.7692 - val_loss: 0.6115 Epoch 46/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9007 - loss: 0.2385 - val_accuracy: 0.7692 - val_loss: 0.6099 Epoch 47/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 410ms/step - accuracy: 0.9060 - loss: 0.2850 - val_accuracy: 0.7692 - val_loss: 0.6513 Epoch 48/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.8930 - loss: 0.3041 - val_accuracy: 0.7692 - val_loss: 0.7181 Epoch 49/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 406ms/step - accuracy: 0.9269 - loss: 0.2591 - val_accuracy: 0.7692 - val_loss: 0.7339 Epoch 50/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9138 - loss: 0.2241 - val_accuracy: 0.7692 - val_loss: 0.6403 Epoch 51/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 414ms/step - accuracy: 0.9269 - loss: 0.2262 - val_accuracy: 0.7692 - val_loss: 0.5594 Epoch 52/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 439ms/step - accuracy: 0.9400 - loss: 0.2566 - val_accuracy: 0.7692 - val_loss: 0.5569 Epoch 53/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 492ms/step - accuracy: 0.9269 - loss: 0.2618 - val_accuracy: 0.7692 - val_loss: 0.6513 Epoch 54/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 416ms/step - accuracy: 0.9034 - loss: 0.2313 - val_accuracy: 0.7692 - val_loss: 0.7127 Epoch 55/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9373 - loss: 0.2240 - val_accuracy: 0.7692 - val_loss: 0.6910 Epoch 56/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9242 - loss: 0.2127 - val_accuracy: 0.7692 - val_loss: 0.6107 Epoch 57/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 388ms/step - accuracy: 0.9138 - loss: 0.2133 - val_accuracy: 0.7692 - val_loss: 0.5550 Epoch 58/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.8930 - loss: 0.3096 - val_accuracy: 0.7692 - val_loss: 0.5497 Epoch 59/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9060 - loss: 0.2872 - val_accuracy: 0.7692 - val_loss: 0.5906 Epoch 60/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9138 - loss: 0.2319 - val_accuracy: 0.7692 - val_loss: 0.6737 Epoch 61/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9269 - loss: 0.2589 - val_accuracy: 0.7692 - val_loss: 0.6923 Epoch 62/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9138 - loss: 0.2559 - val_accuracy: 0.7692 - val_loss: 0.6582 Epoch 63/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.8930 - loss: 0.2469 - val_accuracy: 0.7692 - val_loss: 0.5985 Epoch 64/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 441ms/step - accuracy: 0.8930 - loss: 0.2836 - val_accuracy: 0.7692 - val_loss: 0.5635 Epoch 65/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 434ms/step - accuracy: 0.9269 - loss: 0.2573 - val_accuracy: 0.7692 - val_loss: 0.5623 Epoch 66/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 430ms/step - accuracy: 0.9504 - loss: 0.2379 - val_accuracy: 0.7692 - val_loss: 0.5741 Epoch 67/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 414ms/step - accuracy: 0.9373 - loss: 0.1953 - val_accuracy: 0.7692 - val_loss: 0.6281 Epoch 68/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 446ms/step - accuracy: 0.9060 - loss: 0.2310 - val_accuracy: 0.7692 - val_loss: 0.6728 Epoch 69/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 468ms/step - accuracy: 0.8930 - loss: 0.2797 - val_accuracy: 0.7692 - val_loss: 0.6655 Epoch 70/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9269 - loss: 0.2044 - val_accuracy: 0.7692 - val_loss: 0.6092 Epoch 71/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 429ms/step - accuracy: 0.9165 - loss: 0.2460 - val_accuracy: 0.7692 - val_loss: 0.5596 Epoch 72/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 386ms/step - accuracy: 0.9269 - loss: 0.2414 - val_accuracy: 0.7692 - val_loss: 0.5823 Epoch 73/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 432ms/step - accuracy: 0.9269 - loss: 0.2322 - val_accuracy: 0.7692 - val_loss: 0.6455 Epoch 74/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 444ms/step - accuracy: 0.9165 - loss: 0.2664 - val_accuracy: 0.7692 - val_loss: 0.6512 Epoch 75/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9138 - loss: 0.2134 - val_accuracy: 0.7692 - val_loss: 0.5925 Epoch 76/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 420ms/step - accuracy: 0.8799 - loss: 0.2532 - val_accuracy: 0.7692 - val_loss: 0.5303 Epoch 77/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 413ms/step - accuracy: 0.9269 - loss: 0.2169 - val_accuracy: 0.7692 - val_loss: 0.5591 Epoch 78/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 392ms/step - accuracy: 0.9034 - loss: 0.2222 - val_accuracy: 0.7692 - val_loss: 0.6337 Epoch 79/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 431ms/step - accuracy: 0.9165 - loss: 0.2220 - val_accuracy: 0.7692 - val_loss: 0.6404 Epoch 80/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9034 - loss: 0.2875 - val_accuracy: 0.7692 - val_loss: 0.5689 Epoch 81/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 433ms/step - accuracy: 0.9165 - loss: 0.2359 - val_accuracy: 0.7692 - val_loss: 0.5249 Epoch 82/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9165 - loss: 0.2810 - val_accuracy: 0.7692 - val_loss: 0.5308 Epoch 83/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 0.9165 - loss: 0.2515 - val_accuracy: 0.7692 - val_loss: 0.5774 Epoch 84/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9165 - loss: 0.2009 - val_accuracy: 0.7692 - val_loss: 0.6471 Epoch 85/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 424ms/step - accuracy: 0.9060 - loss: 0.2647 - val_accuracy: 0.7692 - val_loss: 0.6492 Epoch 86/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 377ms/step - accuracy: 0.9165 - loss: 0.2600 - val_accuracy: 0.7692 - val_loss: 0.5985 Epoch 87/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9165 - loss: 0.2435 - val_accuracy: 0.7692 - val_loss: 0.5514 Epoch 88/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 425ms/step - accuracy: 0.9165 - loss: 0.2075 - val_accuracy: 0.7692 - val_loss: 0.5454 Epoch 89/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 444ms/step - accuracy: 0.9165 - loss: 0.2135 - val_accuracy: 0.7692 - val_loss: 0.5848 Epoch 90/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 386ms/step - accuracy: 0.9739 - loss: 0.1402 - val_accuracy: 0.7692 - val_loss: 0.6033 Epoch 91/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 0.9165 - loss: 0.2206 - val_accuracy: 0.7692 - val_loss: 0.5255 Epoch 92/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 424ms/step - accuracy: 0.9295 - loss: 0.2266 - val_accuracy: 0.7692 - val_loss: 0.5003 Epoch 93/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9373 - loss: 0.2125 - val_accuracy: 0.7692 - val_loss: 0.5065 Epoch 94/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 390ms/step - accuracy: 0.9165 - loss: 0.2024 - val_accuracy: 0.7692 - val_loss: 0.4950 Epoch 95/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 410ms/step - accuracy: 0.9504 - loss: 0.1850 - val_accuracy: 0.7692 - val_loss: 0.5488 Epoch 96/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 432ms/step - accuracy: 0.9165 - loss: 0.2380 - val_accuracy: 0.7692 - val_loss: 0.5368 Epoch 97/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 404ms/step - accuracy: 0.9504 - loss: 0.1842 - val_accuracy: 0.7692 - val_loss: 0.5693 Epoch 98/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 410ms/step - accuracy: 0.9295 - loss: 0.2093 - val_accuracy: 0.7692 - val_loss: 0.5186 Epoch 99/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9530 - loss: 0.2150 - val_accuracy: 0.7692 - val_loss: 0.5092 Epoch 100/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9504 - loss: 0.1932 - val_accuracy: 0.7692 - val_loss: 0.5393 Epoch 101/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9165 - loss: 0.2106 - val_accuracy: 0.7692 - val_loss: 0.5064 Epoch 102/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9060 - loss: 0.2096 - val_accuracy: 0.7692 - val_loss: 0.5321 Epoch 103/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 406ms/step - accuracy: 0.9165 - loss: 0.2273 - val_accuracy: 0.7692 - val_loss: 0.4973 Epoch 104/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9400 - loss: 0.2264 - val_accuracy: 0.7692 - val_loss: 0.4599 Epoch 105/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 435ms/step - accuracy: 0.9269 - loss: 0.1883 - val_accuracy: 0.7692 - val_loss: 0.4861 Epoch 106/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 392ms/step - accuracy: 0.9400 - loss: 0.1937 - val_accuracy: 0.7692 - val_loss: 0.4857 Epoch 107/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9165 - loss: 0.1705 - val_accuracy: 0.7692 - val_loss: 0.5170 Epoch 108/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 443ms/step - accuracy: 0.9269 - loss: 0.1925 - val_accuracy: 0.7692 - val_loss: 0.4621 Epoch 109/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 0.9400 - loss: 0.1880 - val_accuracy: 0.6923 - val_loss: 0.4324 Epoch 110/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 410ms/step - accuracy: 0.9138 - loss: 0.1780 - val_accuracy: 0.7692 - val_loss: 0.4928 Epoch 111/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 406ms/step - accuracy: 0.9269 - loss: 0.1707 - val_accuracy: 0.7692 - val_loss: 0.5104 Epoch 112/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9504 - loss: 0.1567 - val_accuracy: 0.7692 - val_loss: 0.4706 Epoch 113/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 414ms/step - accuracy: 0.9608 - loss: 0.1331 - val_accuracy: 0.7692 - val_loss: 0.4438 Epoch 114/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 388ms/step - accuracy: 0.9295 - loss: 0.2115 - val_accuracy: 0.7692 - val_loss: 0.4174 Epoch 115/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 410ms/step - accuracy: 0.9295 - loss: 0.1797 - val_accuracy: 0.7692 - val_loss: 0.5467 Epoch 116/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9504 - loss: 0.1426 - val_accuracy: 0.7692 - val_loss: 0.6570 Epoch 117/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 434ms/step - accuracy: 0.8930 - loss: 0.2466 - val_accuracy: 0.7692 - val_loss: 0.4289 Epoch 118/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9400 - loss: 0.1988 - val_accuracy: 0.6923 - val_loss: 0.3920 Epoch 119/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 376ms/step - accuracy: 0.9242 - loss: 0.2654 - val_accuracy: 0.7692 - val_loss: 0.4361 Epoch 120/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 419ms/step - accuracy: 0.9504 - loss: 0.1280 - val_accuracy: 0.7692 - val_loss: 0.5341 Epoch 121/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 410ms/step - accuracy: 0.9269 - loss: 0.1378 - val_accuracy: 0.7692 - val_loss: 0.5402 Epoch 122/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 0.9165 - loss: 0.1963 - val_accuracy: 0.7692 - val_loss: 0.4763 Epoch 123/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 433ms/step - accuracy: 0.9634 - loss: 0.1481 - val_accuracy: 0.7692 - val_loss: 0.4869 Epoch 124/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 417ms/step - accuracy: 0.9400 - loss: 0.1965 - val_accuracy: 0.7692 - val_loss: 0.4772 Epoch 125/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 430ms/step - accuracy: 0.9608 - loss: 0.1595 - val_accuracy: 0.7692 - val_loss: 0.4648 Epoch 126/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 416ms/step - accuracy: 0.9269 - loss: 0.1521 - val_accuracy: 0.6923 - val_loss: 0.3633 Epoch 127/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 486ms/step - accuracy: 0.9400 - loss: 0.2193 - val_accuracy: 0.7692 - val_loss: 0.3591 Epoch 128/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9400 - loss: 0.1409 - val_accuracy: 0.7692 - val_loss: 0.5169 Epoch 129/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 427ms/step - accuracy: 0.9400 - loss: 0.1808 - val_accuracy: 0.7692 - val_loss: 0.5129 Epoch 130/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 400ms/step - accuracy: 0.9504 - loss: 0.1566 - val_accuracy: 0.7692 - val_loss: 0.3722 Epoch 131/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 413ms/step - accuracy: 0.9530 - loss: 0.1705 - val_accuracy: 0.7692 - val_loss: 0.3543 Epoch 132/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9034 - loss: 0.1938 - val_accuracy: 0.7692 - val_loss: 0.4788 Epoch 133/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 419ms/step - accuracy: 0.9504 - loss: 0.1997 - val_accuracy: 0.7692 - val_loss: 0.5080 Epoch 134/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 421ms/step - accuracy: 0.9400 - loss: 0.1552 - val_accuracy: 0.7692 - val_loss: 0.4109 Epoch 135/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 386ms/step - accuracy: 0.9295 - loss: 0.1908 - val_accuracy: 0.6923 - val_loss: 0.3768 Epoch 136/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9765 - loss: 0.1601 - val_accuracy: 0.7692 - val_loss: 0.4528 Epoch 137/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 0.9295 - loss: 0.2156 - val_accuracy: 0.7692 - val_loss: 0.5688 Epoch 138/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9269 - loss: 0.2142 - val_accuracy: 0.7692 - val_loss: 0.5310 Epoch 139/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 0.9504 - loss: 0.1151 - val_accuracy: 0.7692 - val_loss: 0.3670 Epoch 140/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 390ms/step - accuracy: 0.9530 - loss: 0.1538 - val_accuracy: 0.7692 - val_loss: 0.3439 Epoch 141/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 386ms/step - accuracy: 0.9634 - loss: 0.1700 - val_accuracy: 0.7692 - val_loss: 0.4226 Epoch 142/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 434ms/step - accuracy: 0.9504 - loss: 0.1303 - val_accuracy: 0.7692 - val_loss: 0.5340 Epoch 143/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 453ms/step - accuracy: 0.9295 - loss: 0.2288 - val_accuracy: 0.7692 - val_loss: 0.3938 Epoch 144/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9295 - loss: 0.1628 - val_accuracy: 0.7692 - val_loss: 0.3659 Epoch 145/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9400 - loss: 0.1713 - val_accuracy: 0.7692 - val_loss: 0.4661 Epoch 146/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9504 - loss: 0.1223 - val_accuracy: 0.7692 - val_loss: 0.4833 Epoch 147/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 427ms/step - accuracy: 0.8930 - loss: 0.1961 - val_accuracy: 0.7692 - val_loss: 0.3541 Epoch 148/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 0.9530 - loss: 0.1904 - val_accuracy: 0.7692 - val_loss: 0.3478 Epoch 149/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 412ms/step - accuracy: 0.9765 - loss: 0.1324 - val_accuracy: 0.7692 - val_loss: 0.5877 Epoch 150/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 419ms/step - accuracy: 0.9504 - loss: 0.1658 - val_accuracy: 0.7692 - val_loss: 0.7223 Epoch 151/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9269 - loss: 0.1716 - val_accuracy: 0.7692 - val_loss: 0.4737 Epoch 152/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 405ms/step - accuracy: 0.9400 - loss: 0.1643 - val_accuracy: 0.8462 - val_loss: 0.3710 Epoch 153/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 0.9295 - loss: 0.1966 - val_accuracy: 0.7692 - val_loss: 0.3545 Epoch 154/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 449ms/step - accuracy: 0.9295 - loss: 0.1258 - val_accuracy: 0.7692 - val_loss: 0.5920 Epoch 155/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 436ms/step - accuracy: 0.9400 - loss: 0.1795 - val_accuracy: 0.7692 - val_loss: 0.7740 Epoch 156/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 384ms/step - accuracy: 0.9295 - loss: 0.2920 - val_accuracy: 0.7692 - val_loss: 0.6326 Epoch 157/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9400 - loss: 0.1500 - val_accuracy: 0.7692 - val_loss: 0.4128 Epoch 158/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9400 - loss: 0.1782 - val_accuracy: 0.6923 - val_loss: 0.4018 Epoch 159/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9739 - loss: 0.1507 - val_accuracy: 0.7692 - val_loss: 0.4105 Epoch 160/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 404ms/step - accuracy: 0.9634 - loss: 0.1165 - val_accuracy: 0.7692 - val_loss: 0.5310 Epoch 161/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9400 - loss: 0.1643 - val_accuracy: 0.7692 - val_loss: 0.5739 Epoch 162/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 0.9530 - loss: 0.1537 - val_accuracy: 0.7692 - val_loss: 0.4771 Epoch 163/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 0.9504 - loss: 0.1351 - val_accuracy: 0.7692 - val_loss: 0.3959 Epoch 164/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9739 - loss: 0.1235 - val_accuracy: 0.6923 - val_loss: 0.4082 Epoch 165/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 386ms/step - accuracy: 0.9504 - loss: 0.1394 - val_accuracy: 0.7692 - val_loss: 0.4880 Epoch 166/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9400 - loss: 0.1669 - val_accuracy: 0.7692 - val_loss: 0.4782 Epoch 167/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 400ms/step - accuracy: 0.9504 - loss: 0.1287 - val_accuracy: 0.7692 - val_loss: 0.4045 Epoch 168/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9530 - loss: 0.1443 - val_accuracy: 0.7692 - val_loss: 0.3608 Epoch 169/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 0.9765 - loss: 0.1293 - val_accuracy: 0.7692 - val_loss: 0.4142 Epoch 170/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 409ms/step - accuracy: 0.9608 - loss: 0.1205 - val_accuracy: 0.7692 - val_loss: 0.4992 Epoch 171/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 373ms/step - accuracy: 0.9400 - loss: 0.1327 - val_accuracy: 0.7692 - val_loss: 0.3294 Epoch 172/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9295 - loss: 0.1649 - val_accuracy: 0.8462 - val_loss: 0.3206 Epoch 173/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 374ms/step - accuracy: 1.0000 - loss: 0.1155 - val_accuracy: 0.7692 - val_loss: 0.4421 Epoch 174/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 428ms/step - accuracy: 0.9295 - loss: 0.1278 - val_accuracy: 0.7692 - val_loss: 0.6108 Epoch 175/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 450ms/step - accuracy: 0.9295 - loss: 0.2001 - val_accuracy: 0.7692 - val_loss: 0.5757 Epoch 176/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 417ms/step - accuracy: 0.9400 - loss: 0.1303 - val_accuracy: 0.7692 - val_loss: 0.4170 Epoch 177/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 422ms/step - accuracy: 0.9634 - loss: 0.1000 - val_accuracy: 0.7692 - val_loss: 0.3527 Epoch 178/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 447ms/step - accuracy: 0.9634 - loss: 0.1209 - val_accuracy: 0.7692 - val_loss: 0.3373 Epoch 179/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 496ms/step - accuracy: 0.9765 - loss: 0.1144 - val_accuracy: 0.7692 - val_loss: 0.4325 Epoch 180/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 408ms/step - accuracy: 0.9634 - loss: 0.1100 - val_accuracy: 0.7692 - val_loss: 0.4371 Epoch 181/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9400 - loss: 0.0919 - val_accuracy: 0.7692 - val_loss: 0.3331 Epoch 182/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9634 - loss: 0.0864 - val_accuracy: 0.7692 - val_loss: 0.3103 Epoch 183/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 432ms/step - accuracy: 0.9634 - loss: 0.0929 - val_accuracy: 0.7692 - val_loss: 0.3313 Epoch 184/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9530 - loss: 0.1049 - val_accuracy: 0.7692 - val_loss: 0.3956 Epoch 185/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 0.9608 - loss: 0.0973 - val_accuracy: 0.7692 - val_loss: 0.3955 Epoch 186/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 0.9765 - loss: 0.0867 - val_accuracy: 0.8462 - val_loss: 0.2869 Epoch 187/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 408ms/step - accuracy: 0.9765 - loss: 0.0998 - val_accuracy: 0.7692 - val_loss: 0.2963 Epoch 188/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 407ms/step - accuracy: 0.9530 - loss: 0.1063 - val_accuracy: 0.7692 - val_loss: 0.2946 Epoch 189/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 430ms/step - accuracy: 0.9634 - loss: 0.1067 - val_accuracy: 0.7692 - val_loss: 0.3050 Epoch 190/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 453ms/step - accuracy: 0.9634 - loss: 0.0769 - val_accuracy: 0.7692 - val_loss: 0.3299 Epoch 191/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 425ms/step - accuracy: 0.9765 - loss: 0.0691 - val_accuracy: 0.7692 - val_loss: 0.3218 Epoch 192/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 418ms/step - accuracy: 0.9295 - loss: 0.0961 - val_accuracy: 0.7692 - val_loss: 0.3193 Epoch 193/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 385ms/step - accuracy: 0.9739 - loss: 0.0782 - val_accuracy: 0.7692 - val_loss: 0.3014 Epoch 194/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 416ms/step - accuracy: 0.9634 - loss: 0.0865 - val_accuracy: 0.9231 - val_loss: 0.2551 Epoch 195/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9530 - loss: 0.1180 - val_accuracy: 0.9231 - val_loss: 0.2323 Epoch 196/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 400ms/step - accuracy: 1.0000 - loss: 0.0956 - val_accuracy: 0.7692 - val_loss: 0.4171 Epoch 197/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 419ms/step - accuracy: 0.9400 - loss: 0.0876 - val_accuracy: 0.7692 - val_loss: 0.4604 Epoch 198/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9739 - loss: 0.0612 - val_accuracy: 0.7692 - val_loss: 0.2908 Epoch 199/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 0.9530 - loss: 0.1132 - val_accuracy: 1.0000 - val_loss: 0.2727 Epoch 200/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 415ms/step - accuracy: 0.9165 - loss: 0.1700 - val_accuracy: 0.7692 - val_loss: 0.3975 Epoch 201/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 433ms/step - accuracy: 0.9400 - loss: 0.0784 - val_accuracy: 0.7692 - val_loss: 0.6311 Epoch 202/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9295 - loss: 0.1682 - val_accuracy: 0.7692 - val_loss: 0.5296 Epoch 203/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 407ms/step - accuracy: 0.9634 - loss: 0.0840 - val_accuracy: 0.7692 - val_loss: 0.2817 Epoch 204/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 1.0000 - loss: 0.0713 - val_accuracy: 1.0000 - val_loss: 0.2481 Epoch 205/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 433ms/step - accuracy: 0.9530 - loss: 0.1127 - val_accuracy: 0.8462 - val_loss: 0.2496 Epoch 206/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9765 - loss: 0.0691 - val_accuracy: 0.7692 - val_loss: 0.5273 Epoch 207/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9634 - loss: 0.0928 - val_accuracy: 0.7692 - val_loss: 0.6615 Epoch 208/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 422ms/step - accuracy: 0.9400 - loss: 0.1776 - val_accuracy: 0.7692 - val_loss: 0.2671 Epoch 209/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 1.0000 - loss: 0.0744 - val_accuracy: 0.8462 - val_loss: 0.2874 Epoch 210/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 419ms/step - accuracy: 0.9765 - loss: 0.1351 - val_accuracy: 0.8462 - val_loss: 0.2387 Epoch 211/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9608 - loss: 0.0803 - val_accuracy: 0.7692 - val_loss: 0.4602 Epoch 212/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9295 - loss: 0.0730 - val_accuracy: 0.7692 - val_loss: 0.4446 Epoch 213/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 438ms/step - accuracy: 0.9295 - loss: 0.1440 - val_accuracy: 0.7692 - val_loss: 0.2685 Epoch 214/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 420ms/step - accuracy: 0.9739 - loss: 0.1290 - val_accuracy: 1.0000 - val_loss: 0.2523 Epoch 215/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9869 - loss: 0.1084 - val_accuracy: 0.7692 - val_loss: 0.2653 Epoch 216/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 0.9400 - loss: 0.1201 - val_accuracy: 0.7692 - val_loss: 0.5409 Epoch 217/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 416ms/step - accuracy: 0.9504 - loss: 0.1093 - val_accuracy: 0.7692 - val_loss: 0.5659 Epoch 218/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9634 - loss: 0.1098 - val_accuracy: 0.6923 - val_loss: 0.3841 Epoch 219/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 392ms/step - accuracy: 0.9869 - loss: 0.0893 - val_accuracy: 0.7692 - val_loss: 0.3039 Epoch 220/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 399ms/step - accuracy: 0.9400 - loss: 0.0828 - val_accuracy: 0.7692 - val_loss: 0.3623 Epoch 221/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 0.9400 - loss: 0.0967 - val_accuracy: 0.7692 - val_loss: 0.3280 Epoch 222/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 413ms/step - accuracy: 0.9400 - loss: 0.1191 - val_accuracy: 0.7692 - val_loss: 0.2492 Epoch 223/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9530 - loss: 0.1220 - val_accuracy: 0.7692 - val_loss: 0.2839 Epoch 224/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 0.9739 - loss: 0.0527 - val_accuracy: 0.7692 - val_loss: 0.2806 Epoch 225/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 420ms/step - accuracy: 0.9765 - loss: 0.0873 - val_accuracy: 0.9231 - val_loss: 0.2904 Epoch 226/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 389ms/step - accuracy: 0.9634 - loss: 0.1140 - val_accuracy: 0.7692 - val_loss: 0.3413 Epoch 227/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 431ms/step - accuracy: 1.0000 - loss: 0.0511 - val_accuracy: 0.7692 - val_loss: 0.4085 Epoch 228/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9400 - loss: 0.1105 - val_accuracy: 0.7692 - val_loss: 0.4649 Epoch 229/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9530 - loss: 0.0857 - val_accuracy: 0.7692 - val_loss: 0.4112 Epoch 230/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 376ms/step - accuracy: 0.9530 - loss: 0.1058 - val_accuracy: 0.7692 - val_loss: 0.3004 Epoch 231/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9634 - loss: 0.0737 - val_accuracy: 0.7692 - val_loss: 0.3352 Epoch 232/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 376ms/step - accuracy: 0.9765 - loss: 0.0676 - val_accuracy: 0.7692 - val_loss: 0.4514 Epoch 233/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 429ms/step - accuracy: 0.9295 - loss: 0.1020 - val_accuracy: 0.7692 - val_loss: 0.3614 Epoch 234/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9765 - loss: 0.0670 - val_accuracy: 0.7692 - val_loss: 0.3095 Epoch 235/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 1.0000 - loss: 0.0832 - val_accuracy: 0.7692 - val_loss: 0.3448 Epoch 236/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 363ms/step - accuracy: 0.9530 - loss: 0.0840 - val_accuracy: 0.7692 - val_loss: 0.4747 Epoch 237/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9504 - loss: 0.0709 - val_accuracy: 0.7692 - val_loss: 0.3956 Epoch 238/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 377ms/step - accuracy: 0.9165 - loss: 0.1047 - val_accuracy: 1.0000 - val_loss: 0.2488 Epoch 239/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 1.0000 - loss: 0.0903 - val_accuracy: 0.7692 - val_loss: 0.2866 Epoch 240/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 0.9400 - loss: 0.0797 - val_accuracy: 0.7692 - val_loss: 0.5467 Epoch 241/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9295 - loss: 0.1067 - val_accuracy: 0.7692 - val_loss: 0.5126 Epoch 242/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9295 - loss: 0.0900 - val_accuracy: 0.7692 - val_loss: 0.3344 Epoch 243/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 0.9869 - loss: 0.0410 - val_accuracy: 0.7692 - val_loss: 0.2740 Epoch 244/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0577 - val_accuracy: 1.0000 - val_loss: 0.2715 Epoch 245/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 418ms/step - accuracy: 1.0000 - loss: 0.0578 - val_accuracy: 0.7692 - val_loss: 0.3208 Epoch 246/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 421ms/step - accuracy: 0.9869 - loss: 0.0462 - val_accuracy: 0.7692 - val_loss: 0.4485 Epoch 247/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 418ms/step - accuracy: 0.9608 - loss: 0.0697 - val_accuracy: 0.7692 - val_loss: 0.3200 Epoch 248/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9869 - loss: 0.0519 - val_accuracy: 1.0000 - val_loss: 0.2222 Epoch 249/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0582 - val_accuracy: 0.8462 - val_loss: 0.2376 Epoch 250/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0485 - val_accuracy: 0.7692 - val_loss: 0.3952 Epoch 251/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 383ms/step - accuracy: 0.9765 - loss: 0.0671 - val_accuracy: 0.7692 - val_loss: 0.5542 Epoch 252/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 0.9400 - loss: 0.1073 - val_accuracy: 0.7692 - val_loss: 0.4185 Epoch 253/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9608 - loss: 0.0594 - val_accuracy: 0.9231 - val_loss: 0.2759 Epoch 254/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 421ms/step - accuracy: 1.0000 - loss: 0.0743 - val_accuracy: 0.7692 - val_loss: 0.3406 Epoch 255/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 0.9530 - loss: 0.1374 - val_accuracy: 0.7692 - val_loss: 0.4760 Epoch 256/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9634 - loss: 0.0812 - val_accuracy: 0.7692 - val_loss: 0.8063 Epoch 257/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 0.9400 - loss: 0.1293 - val_accuracy: 0.7692 - val_loss: 0.5774 Epoch 258/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 420ms/step - accuracy: 0.9765 - loss: 0.0805 - val_accuracy: 0.9231 - val_loss: 0.2410 Epoch 259/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 434ms/step - accuracy: 0.9869 - loss: 0.0558 - val_accuracy: 0.9231 - val_loss: 0.2571 Epoch 260/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 419ms/step - accuracy: 0.9765 - loss: 0.0893 - val_accuracy: 0.7692 - val_loss: 0.3241 Epoch 261/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9530 - loss: 0.0849 - val_accuracy: 0.7692 - val_loss: 0.4916 Epoch 262/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 420ms/step - accuracy: 0.9530 - loss: 0.0834 - val_accuracy: 0.7692 - val_loss: 0.5294 Epoch 263/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 400ms/step - accuracy: 0.9869 - loss: 0.0467 - val_accuracy: 0.7692 - val_loss: 0.4759 Epoch 264/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 364ms/step - accuracy: 0.9608 - loss: 0.0659 - val_accuracy: 0.7692 - val_loss: 0.3118 Epoch 265/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 1.0000 - loss: 0.0477 - val_accuracy: 0.7692 - val_loss: 0.3010 Epoch 266/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 399ms/step - accuracy: 0.9739 - loss: 0.1110 - val_accuracy: 0.8462 - val_loss: 0.2866 Epoch 267/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 0.9530 - loss: 0.0946 - val_accuracy: 0.7692 - val_loss: 0.3459 Epoch 268/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 434ms/step - accuracy: 1.0000 - loss: 0.0372 - val_accuracy: 0.7692 - val_loss: 0.4094 Epoch 269/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 421ms/step - accuracy: 0.9765 - loss: 0.0903 - val_accuracy: 0.7692 - val_loss: 0.3913 Epoch 270/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9269 - loss: 0.0971 - val_accuracy: 0.7692 - val_loss: 0.3338 Epoch 271/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9765 - loss: 0.0568 - val_accuracy: 0.7692 - val_loss: 0.2888 Epoch 272/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9869 - loss: 0.0527 - val_accuracy: 0.7692 - val_loss: 0.3334 Epoch 273/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 0.9634 - loss: 0.0552 - val_accuracy: 0.7692 - val_loss: 0.4268 Epoch 274/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 0.9530 - loss: 0.0615 - val_accuracy: 0.7692 - val_loss: 0.4284 Epoch 275/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 383ms/step - accuracy: 0.9530 - loss: 0.0706 - val_accuracy: 0.7692 - val_loss: 0.3706 Epoch 276/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 448ms/step - accuracy: 0.9765 - loss: 0.0618 - val_accuracy: 0.7692 - val_loss: 0.3895 Epoch 277/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 413ms/step - accuracy: 0.9869 - loss: 0.0670 - val_accuracy: 0.7692 - val_loss: 0.3811 Epoch 278/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 420ms/step - accuracy: 0.9530 - loss: 0.0926 - val_accuracy: 0.7692 - val_loss: 0.2643 Epoch 279/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 403ms/step - accuracy: 1.0000 - loss: 0.0398 - val_accuracy: 0.9231 - val_loss: 0.2326 Epoch 280/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 400ms/step - accuracy: 1.0000 - loss: 0.0562 - val_accuracy: 0.7692 - val_loss: 0.2701 Epoch 281/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 370ms/step - accuracy: 0.9869 - loss: 0.0441 - val_accuracy: 0.7692 - val_loss: 0.3600 Epoch 282/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9765 - loss: 0.0846 - val_accuracy: 0.7692 - val_loss: 0.2587 Epoch 283/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9530 - loss: 0.0719 - val_accuracy: 0.9231 - val_loss: 0.2253 Epoch 284/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0567 - val_accuracy: 0.7692 - val_loss: 0.3017 Epoch 285/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 0.9634 - loss: 0.0458 - val_accuracy: 0.7692 - val_loss: 0.3598 Epoch 286/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0347 - val_accuracy: 0.7692 - val_loss: 0.3625 Epoch 287/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9765 - loss: 0.0528 - val_accuracy: 0.7692 - val_loss: 0.3887 Epoch 288/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0324 - val_accuracy: 0.7692 - val_loss: 0.3109 Epoch 289/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9765 - loss: 0.0471 - val_accuracy: 0.7692 - val_loss: 0.2575 Epoch 290/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9869 - loss: 0.0461 - val_accuracy: 0.8462 - val_loss: 0.2337 Epoch 291/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0380 - val_accuracy: 0.9231 - val_loss: 0.2059 Epoch 292/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0593 - val_accuracy: 0.7692 - val_loss: 0.2734 Epoch 293/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9765 - loss: 0.0643 - val_accuracy: 0.7692 - val_loss: 0.3427 Epoch 294/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9869 - loss: 0.0274 - val_accuracy: 0.7692 - val_loss: 0.3298 Epoch 295/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 416ms/step - accuracy: 0.9765 - loss: 0.0678 - val_accuracy: 0.8462 - val_loss: 0.2625 Epoch 296/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 522ms/step - accuracy: 0.9765 - loss: 0.0727 - val_accuracy: 0.9231 - val_loss: 0.2734 Epoch 297/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 517ms/step - accuracy: 1.0000 - loss: 0.0456 - val_accuracy: 0.7692 - val_loss: 0.4880 Epoch 298/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 466ms/step - accuracy: 0.9739 - loss: 0.0651 - val_accuracy: 0.7692 - val_loss: 0.5144 Epoch 299/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 454ms/step - accuracy: 1.0000 - loss: 0.0231 - val_accuracy: 0.7692 - val_loss: 0.3953 Epoch 300/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 422ms/step - accuracy: 1.0000 - loss: 0.0742 - val_accuracy: 0.9231 - val_loss: 0.3796 Epoch 301/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 471ms/step - accuracy: 1.0000 - loss: 0.0560 - val_accuracy: 0.7692 - val_loss: 0.3122 Epoch 302/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 451ms/step - accuracy: 0.9765 - loss: 0.0585 - val_accuracy: 0.7692 - val_loss: 0.4277 Epoch 303/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 484ms/step - accuracy: 1.0000 - loss: 0.0281 - val_accuracy: 0.7692 - val_loss: 0.5875 Epoch 304/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 436ms/step - accuracy: 0.9530 - loss: 0.1071 - val_accuracy: 0.7692 - val_loss: 0.3645 Epoch 305/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 444ms/step - accuracy: 1.0000 - loss: 0.0321 - val_accuracy: 0.9231 - val_loss: 0.2162 Epoch 306/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 429ms/step - accuracy: 0.9765 - loss: 0.0462 - val_accuracy: 0.9231 - val_loss: 0.2046 Epoch 307/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 447ms/step - accuracy: 0.9530 - loss: 0.0924 - val_accuracy: 0.7692 - val_loss: 0.3130 Epoch 308/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 438ms/step - accuracy: 1.0000 - loss: 0.0304 - val_accuracy: 0.7692 - val_loss: 0.4230 Epoch 309/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 492ms/step - accuracy: 0.9739 - loss: 0.0491 - val_accuracy: 0.7692 - val_loss: 0.3958 Epoch 310/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 465ms/step - accuracy: 1.0000 - loss: 0.0430 - val_accuracy: 0.9231 - val_loss: 0.2565 Epoch 311/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 443ms/step - accuracy: 1.0000 - loss: 0.0408 - val_accuracy: 0.9231 - val_loss: 0.2027 Epoch 312/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 470ms/step - accuracy: 0.9765 - loss: 0.0633 - val_accuracy: 0.7692 - val_loss: 0.2638 Epoch 313/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 0.9634 - loss: 0.0821 - val_accuracy: 0.9231 - val_loss: 0.2320 Epoch 314/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 391ms/step - accuracy: 1.0000 - loss: 0.0462 - val_accuracy: 0.9231 - val_loss: 0.2363 Epoch 315/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 421ms/step - accuracy: 0.9869 - loss: 0.0504 - val_accuracy: 0.7692 - val_loss: 0.3393 Epoch 316/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 375ms/step - accuracy: 1.0000 - loss: 0.0283 - val_accuracy: 0.7692 - val_loss: 0.4987 Epoch 317/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 384ms/step - accuracy: 0.9530 - loss: 0.0664 - val_accuracy: 0.7692 - val_loss: 0.3899 Epoch 318/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 444ms/step - accuracy: 0.9765 - loss: 0.0511 - val_accuracy: 0.8462 - val_loss: 0.2995 Epoch 319/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 408ms/step - accuracy: 1.0000 - loss: 0.0237 - val_accuracy: 0.9231 - val_loss: 0.2711 Epoch 320/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 423ms/step - accuracy: 0.9869 - loss: 0.0494 - val_accuracy: 0.9231 - val_loss: 0.2392 Epoch 321/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 450ms/step - accuracy: 1.0000 - loss: 0.0306 - val_accuracy: 0.9231 - val_loss: 0.2239 Epoch 322/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 401ms/step - accuracy: 1.0000 - loss: 0.0469 - val_accuracy: 0.7692 - val_loss: 0.3249 Epoch 323/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 431ms/step - accuracy: 1.0000 - loss: 0.0157 - val_accuracy: 0.7692 - val_loss: 0.5151 Epoch 324/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 402ms/step - accuracy: 0.9634 - loss: 0.0679 - val_accuracy: 0.7692 - val_loss: 0.2839 Epoch 325/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0371 - val_accuracy: 0.9231 - val_loss: 0.2664 Epoch 326/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 1.0000 - loss: 0.0329 - val_accuracy: 0.6923 - val_loss: 0.3530 Epoch 327/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 431ms/step - accuracy: 0.9765 - loss: 0.0359 - val_accuracy: 0.7692 - val_loss: 0.5018 Epoch 328/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 411ms/step - accuracy: 0.9530 - loss: 0.0937 - val_accuracy: 0.7692 - val_loss: 0.4518 Epoch 329/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 412ms/step - accuracy: 0.9739 - loss: 0.0511 - val_accuracy: 0.7692 - val_loss: 0.2984 Epoch 330/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0257 - val_accuracy: 0.8462 - val_loss: 0.2677 Epoch 331/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0554 - val_accuracy: 0.9231 - val_loss: 0.1804 Epoch 332/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0233 - val_accuracy: 0.7692 - val_loss: 0.4709 Epoch 333/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9739 - loss: 0.0380 - val_accuracy: 0.7692 - val_loss: 0.6582 Epoch 334/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9634 - loss: 0.0984 - val_accuracy: 0.9231 - val_loss: 0.2198 Epoch 335/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0238 - val_accuracy: 0.9231 - val_loss: 0.2461 Epoch 336/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 0.9765 - loss: 0.0835 - val_accuracy: 0.9231 - val_loss: 0.2386 Epoch 337/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 0.9765 - loss: 0.0668 - val_accuracy: 0.7692 - val_loss: 0.3762 Epoch 338/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 1.0000 - loss: 0.0283 - val_accuracy: 0.7692 - val_loss: 0.6066 Epoch 339/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9400 - loss: 0.0760 - val_accuracy: 0.7692 - val_loss: 0.3641 Epoch 340/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0225 - val_accuracy: 0.8462 - val_loss: 0.2421 Epoch 341/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0336 - val_accuracy: 0.9231 - val_loss: 0.2397 Epoch 342/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0408 - val_accuracy: 0.7692 - val_loss: 0.2496 Epoch 343/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0166 - val_accuracy: 0.7692 - val_loss: 0.4316 Epoch 344/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 0.9869 - loss: 0.0322 - val_accuracy: 0.7692 - val_loss: 0.4697 Epoch 345/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9530 - loss: 0.1203 - val_accuracy: 0.9231 - val_loss: 0.2100 Epoch 346/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0425 - val_accuracy: 0.9231 - val_loss: 0.2010 Epoch 347/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 0.9739 - loss: 0.0423 - val_accuracy: 0.9231 - val_loss: 0.2279 Epoch 348/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0310 - val_accuracy: 0.7692 - val_loss: 0.3264 Epoch 349/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9869 - loss: 0.0411 - val_accuracy: 0.7692 - val_loss: 0.3257 Epoch 350/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0202 - val_accuracy: 0.7692 - val_loss: 0.2750 Epoch 351/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 1.0000 - loss: 0.0376 - val_accuracy: 0.9231 - val_loss: 0.2354 Epoch 352/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9869 - loss: 0.0369 - val_accuracy: 0.7692 - val_loss: 0.2632 Epoch 353/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0242 - val_accuracy: 0.7692 - val_loss: 0.3546 Epoch 354/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0284 - val_accuracy: 0.7692 - val_loss: 0.3320 Epoch 355/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9869 - loss: 0.0271 - val_accuracy: 0.9231 - val_loss: 0.1957 Epoch 356/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0225 - val_accuracy: 0.9231 - val_loss: 0.2020 Epoch 357/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 1.0000 - loss: 0.0411 - val_accuracy: 0.9231 - val_loss: 0.1874 Epoch 358/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9765 - loss: 0.0425 - val_accuracy: 0.8462 - val_loss: 0.2129 Epoch 359/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0203 - val_accuracy: 0.7692 - val_loss: 0.4200 Epoch 360/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 364ms/step - accuracy: 1.0000 - loss: 0.0160 - val_accuracy: 0.7692 - val_loss: 0.5190 Epoch 361/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 429ms/step - accuracy: 0.9530 - loss: 0.0531 - val_accuracy: 0.7692 - val_loss: 0.2373 Epoch 362/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0228 - val_accuracy: 1.0000 - val_loss: 0.1851 Epoch 363/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0274 - val_accuracy: 1.0000 - val_loss: 0.1861 Epoch 364/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0273 - val_accuracy: 0.7692 - val_loss: 0.2521 Epoch 365/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9869 - loss: 0.0264 - val_accuracy: 0.7692 - val_loss: 0.3120 Epoch 366/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0245 - val_accuracy: 0.8462 - val_loss: 0.2079 Epoch 367/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9765 - loss: 0.0396 - val_accuracy: 0.9231 - val_loss: 0.1702 Epoch 368/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 0.9765 - loss: 0.0682 - val_accuracy: 0.9231 - val_loss: 0.1723 Epoch 369/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0202 - val_accuracy: 0.7692 - val_loss: 0.3350 Epoch 370/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9869 - loss: 0.0319 - val_accuracy: 0.7692 - val_loss: 0.4205 Epoch 371/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0246 - val_accuracy: 0.7692 - val_loss: 0.2412 Epoch 372/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0337 - val_accuracy: 0.9231 - val_loss: 0.1653 Epoch 373/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9869 - loss: 0.0333 - val_accuracy: 0.9231 - val_loss: 0.1708 Epoch 374/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0131 - val_accuracy: 0.7692 - val_loss: 0.3679 Epoch 375/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9739 - loss: 0.0382 - val_accuracy: 0.7692 - val_loss: 0.3397 Epoch 376/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0127 - val_accuracy: 0.8462 - val_loss: 0.2245 Epoch 377/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9765 - loss: 0.0378 - val_accuracy: 0.8462 - val_loss: 0.2765 Epoch 378/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 0.9634 - loss: 0.0626 - val_accuracy: 0.7692 - val_loss: 0.2672 Epoch 379/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0146 - val_accuracy: 0.7692 - val_loss: 0.2976 Epoch 380/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0146 - val_accuracy: 0.8462 - val_loss: 0.2269 Epoch 381/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9634 - loss: 0.0520 - val_accuracy: 0.9231 - val_loss: 0.1498 Epoch 382/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9869 - loss: 0.0399 - val_accuracy: 0.9231 - val_loss: 0.1830 Epoch 383/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0190 - val_accuracy: 0.8462 - val_loss: 0.2268 Epoch 384/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 1.0000 - loss: 0.0163 - val_accuracy: 0.7692 - val_loss: 0.6086 Epoch 385/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9869 - loss: 0.0576 - val_accuracy: 0.7692 - val_loss: 0.6012 Epoch 386/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0262 - val_accuracy: 0.7692 - val_loss: 0.2776 Epoch 387/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0128 - val_accuracy: 1.0000 - val_loss: 0.1869 Epoch 388/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 1.0000 - loss: 0.0330 - val_accuracy: 0.9231 - val_loss: 0.1792 Epoch 389/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 412ms/step - accuracy: 1.0000 - loss: 0.0220 - val_accuracy: 0.9231 - val_loss: 0.2003 Epoch 390/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0203 - val_accuracy: 0.7692 - val_loss: 0.3565 Epoch 391/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 0.9869 - loss: 0.0313 - val_accuracy: 0.7692 - val_loss: 0.3597 Epoch 392/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9765 - loss: 0.0355 - val_accuracy: 0.9231 - val_loss: 0.2139 Epoch 393/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9869 - loss: 0.0262 - val_accuracy: 0.8462 - val_loss: 0.2610 Epoch 394/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 1.0000 - loss: 0.0336 - val_accuracy: 0.7692 - val_loss: 0.3384 Epoch 395/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0212 - val_accuracy: 0.7692 - val_loss: 0.4785 Epoch 396/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0210 - val_accuracy: 0.7692 - val_loss: 0.5804 Epoch 397/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9634 - loss: 0.0462 - val_accuracy: 0.7692 - val_loss: 0.3943 Epoch 398/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0281 - val_accuracy: 0.9231 - val_loss: 0.1841 Epoch 399/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0159 - val_accuracy: 0.9231 - val_loss: 0.1743 Epoch 400/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0190 - val_accuracy: 0.9231 - val_loss: 0.1656 Epoch 401/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0170 - val_accuracy: 0.7692 - val_loss: 0.2536 Epoch 402/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 0.9869 - loss: 0.0251 - val_accuracy: 0.7692 - val_loss: 0.2789 Epoch 403/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 1.0000 - loss: 0.0169 - val_accuracy: 0.9231 - val_loss: 0.1842 Epoch 404/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0306 - val_accuracy: 0.9231 - val_loss: 0.1700 Epoch 405/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0179 - val_accuracy: 0.8462 - val_loss: 0.2451 Epoch 406/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0267 - val_accuracy: 0.7692 - val_loss: 0.3880 Epoch 407/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 0.9869 - loss: 0.0221 - val_accuracy: 0.7692 - val_loss: 0.3244 Epoch 408/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0173 - val_accuracy: 0.9231 - val_loss: 0.2305 Epoch 409/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0294 - val_accuracy: 0.9231 - val_loss: 0.2138 Epoch 410/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0363 - val_accuracy: 0.9231 - val_loss: 0.2205 Epoch 411/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0226 - val_accuracy: 0.7692 - val_loss: 0.3381 Epoch 412/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 1.0000 - loss: 0.0222 - val_accuracy: 0.7692 - val_loss: 0.3928 Epoch 413/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9765 - loss: 0.0350 - val_accuracy: 0.7692 - val_loss: 0.3264 Epoch 414/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0157 - val_accuracy: 0.9231 - val_loss: 0.2190 Epoch 415/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0149 - val_accuracy: 0.9231 - val_loss: 0.1585 Epoch 416/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 0.9869 - loss: 0.0198 - val_accuracy: 0.9231 - val_loss: 0.1752 Epoch 417/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 378ms/step - accuracy: 1.0000 - loss: 0.0133 - val_accuracy: 0.7692 - val_loss: 0.2694 Epoch 418/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 0.9765 - loss: 0.0266 - val_accuracy: 0.9231 - val_loss: 0.2445 Epoch 419/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0147 - val_accuracy: 0.9231 - val_loss: 0.2271 Epoch 420/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0231 - val_accuracy: 0.9231 - val_loss: 0.1732 Epoch 421/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0214 - val_accuracy: 0.9231 - val_loss: 0.1765 Epoch 422/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9765 - loss: 0.0325 - val_accuracy: 0.9231 - val_loss: 0.1914 Epoch 423/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0124 - val_accuracy: 0.9231 - val_loss: 0.2179 Epoch 424/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0289 - val_accuracy: 0.9231 - val_loss: 0.1967 Epoch 425/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0205 - val_accuracy: 0.9231 - val_loss: 0.1569 Epoch 426/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0122 - val_accuracy: 0.9231 - val_loss: 0.1657 Epoch 427/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 399ms/step - accuracy: 1.0000 - loss: 0.0108 - val_accuracy: 0.9231 - val_loss: 0.2204 Epoch 428/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 389ms/step - accuracy: 1.0000 - loss: 0.0133 - val_accuracy: 0.9231 - val_loss: 0.2003 Epoch 429/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0182 - val_accuracy: 0.9231 - val_loss: 0.1452 Epoch 430/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9765 - loss: 0.0460 - val_accuracy: 0.9231 - val_loss: 0.1603 Epoch 431/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9765 - loss: 0.0439 - val_accuracy: 0.9231 - val_loss: 0.1751 Epoch 432/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 409ms/step - accuracy: 1.0000 - loss: 0.0160 - val_accuracy: 0.8462 - val_loss: 0.2537 Epoch 433/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0199 - val_accuracy: 0.8462 - val_loss: 0.2751 Epoch 434/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0279 - val_accuracy: 0.9231 - val_loss: 0.2138 Epoch 435/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0129 - val_accuracy: 0.9231 - val_loss: 0.1742 Epoch 436/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 412ms/step - accuracy: 1.0000 - loss: 0.0130 - val_accuracy: 0.9231 - val_loss: 0.1609 Epoch 437/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0110 - val_accuracy: 0.9231 - val_loss: 0.1933 Epoch 438/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0142 - val_accuracy: 0.9231 - val_loss: 0.1766 Epoch 439/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 1.0000 - loss: 0.0080 - val_accuracy: 0.9231 - val_loss: 0.1623 Epoch 440/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0070 - val_accuracy: 0.9231 - val_loss: 0.1506 Epoch 441/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0242 - val_accuracy: 0.8462 - val_loss: 0.1421 Epoch 442/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0102 - val_accuracy: 0.9231 - val_loss: 0.1532 Epoch 443/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0150 - val_accuracy: 0.9231 - val_loss: 0.2329 Epoch 444/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0136 - val_accuracy: 0.9231 - val_loss: 0.2277 Epoch 445/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0191 - val_accuracy: 0.9231 - val_loss: 0.1744 Epoch 446/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0075 - val_accuracy: 0.9231 - val_loss: 0.1686 Epoch 447/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0213 - val_accuracy: 0.9231 - val_loss: 0.2053 Epoch 448/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 408ms/step - accuracy: 1.0000 - loss: 0.0114 - val_accuracy: 0.7692 - val_loss: 0.3856 Epoch 449/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0137 - val_accuracy: 0.7692 - val_loss: 0.3775 Epoch 450/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 388ms/step - accuracy: 0.9765 - loss: 0.0530 - val_accuracy: 1.0000 - val_loss: 0.1571 Epoch 451/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9869 - loss: 0.0253 - val_accuracy: 0.9231 - val_loss: 0.1590 Epoch 452/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0168 - val_accuracy: 0.8462 - val_loss: 0.2728 Epoch 453/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0093 - val_accuracy: 0.7692 - val_loss: 0.5228 Epoch 454/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 400ms/step - accuracy: 1.0000 - loss: 0.0298 - val_accuracy: 0.7692 - val_loss: 0.4047 Epoch 455/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0254 - val_accuracy: 0.9231 - val_loss: 0.2116 Epoch 456/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0251 - val_accuracy: 0.8462 - val_loss: 0.2295 Epoch 457/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0192 - val_accuracy: 0.9231 - val_loss: 0.2215 Epoch 458/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 1.0000 - loss: 0.0110 - val_accuracy: 0.7692 - val_loss: 0.3424 Epoch 459/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0169 - val_accuracy: 0.8462 - val_loss: 0.2618 Epoch 460/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 0.9869 - loss: 0.0173 - val_accuracy: 0.9231 - val_loss: 0.1644 Epoch 461/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 1.0000 - loss: 0.0118 - val_accuracy: 0.8462 - val_loss: 0.2706 Epoch 462/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 0.9869 - loss: 0.0427 - val_accuracy: 0.9231 - val_loss: 0.1980 Epoch 463/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0140 - val_accuracy: 0.7692 - val_loss: 0.8420 Epoch 464/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9400 - loss: 0.1004 - val_accuracy: 0.7692 - val_loss: 0.4117 Epoch 465/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0180 - val_accuracy: 0.8462 - val_loss: 0.3865 Epoch 466/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 379ms/step - accuracy: 1.0000 - loss: 0.0467 - val_accuracy: 0.8462 - val_loss: 0.3669 Epoch 467/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0291 - val_accuracy: 0.7692 - val_loss: 0.2963 Epoch 468/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0133 - val_accuracy: 0.7692 - val_loss: 0.7678 Epoch 469/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9634 - loss: 0.0587 - val_accuracy: 0.7692 - val_loss: 0.5892 Epoch 470/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0152 - val_accuracy: 0.9231 - val_loss: 0.1490 Epoch 471/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0340 - val_accuracy: 0.9231 - val_loss: 0.2496 Epoch 472/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 377ms/step - accuracy: 0.9765 - loss: 0.0401 - val_accuracy: 0.9231 - val_loss: 0.1582 Epoch 473/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0337 - val_accuracy: 0.8462 - val_loss: 0.2248 Epoch 474/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9869 - loss: 0.0206 - val_accuracy: 0.7692 - val_loss: 0.2795 Epoch 475/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 377ms/step - accuracy: 1.0000 - loss: 0.0137 - val_accuracy: 0.9231 - val_loss: 0.1551 Epoch 476/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 382ms/step - accuracy: 1.0000 - loss: 0.0147 - val_accuracy: 0.9231 - val_loss: 0.1485 Epoch 477/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9869 - loss: 0.0431 - val_accuracy: 0.9231 - val_loss: 0.1516 Epoch 478/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0114 - val_accuracy: 0.7692 - val_loss: 0.5023 Epoch 479/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 0.9634 - loss: 0.0362 - val_accuracy: 0.7692 - val_loss: 0.5360 Epoch 480/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9765 - loss: 0.0283 - val_accuracy: 0.9231 - val_loss: 0.2089 Epoch 481/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 398ms/step - accuracy: 1.0000 - loss: 0.0101 - val_accuracy: 0.8462 - val_loss: 0.2023 Epoch 482/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 0.9765 - loss: 0.0340 - val_accuracy: 1.0000 - val_loss: 0.1702 Epoch 483/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 1.0000 - loss: 0.0177 - val_accuracy: 0.9231 - val_loss: 0.2014 Epoch 484/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0134 - val_accuracy: 0.7692 - val_loss: 0.3092 Epoch 485/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 0.9869 - loss: 0.0263 - val_accuracy: 0.8462 - val_loss: 0.2242 Epoch 486/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0166 - val_accuracy: 0.9231 - val_loss: 0.1425 Epoch 487/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0146 - val_accuracy: 0.9231 - val_loss: 0.1791 Epoch 488/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 395ms/step - accuracy: 1.0000 - loss: 0.0203 - val_accuracy: 0.9231 - val_loss: 0.1656 Epoch 489/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 0.9869 - loss: 0.0215 - val_accuracy: 0.7692 - val_loss: 0.3327 Epoch 490/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0156 - val_accuracy: 0.8462 - val_loss: 0.2861 Epoch 491/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 397ms/step - accuracy: 1.0000 - loss: 0.0072 - val_accuracy: 0.9231 - val_loss: 0.2213 Epoch 492/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 383ms/step - accuracy: 1.0000 - loss: 0.0186 - val_accuracy: 0.9231 - val_loss: 0.1856 Epoch 493/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 394ms/step - accuracy: 1.0000 - loss: 0.0092 - val_accuracy: 0.9231 - val_loss: 0.1682 Epoch 494/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 380ms/step - accuracy: 1.0000 - loss: 0.0088 - val_accuracy: 0.9231 - val_loss: 0.1566 Epoch 495/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 393ms/step - accuracy: 1.0000 - loss: 0.0097 - val_accuracy: 0.9231 - val_loss: 0.1495 Epoch 496/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 392ms/step - accuracy: 1.0000 - loss: 0.0102 - val_accuracy: 0.9231 - val_loss: 0.1494 Epoch 497/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0072 - val_accuracy: 0.9231 - val_loss: 0.1567 Epoch 498/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 381ms/step - accuracy: 0.9869 - loss: 0.0212 - val_accuracy: 0.9231 - val_loss: 0.1547 Epoch 499/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0145 - val_accuracy: 0.9231 - val_loss: 0.1878 Epoch 500/500 [1m2/2[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m1s[0m 396ms/step - accuracy: 1.0000 - loss: 0.0146 - val_accuracy: 0.8462 - val_loss: 0.2146
model.summary()
Model: "sequential_18"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ │ reshape_15 (Reshape) │ (None, 100, 1000, 1) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ conv2d_50 (Conv2D) │ (None, 98, 998, 32) │ 320 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ max_pooling2d_49 (MaxPooling2D) │ (None, 49, 499, 32) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ conv2d_51 (Conv2D) │ (None, 47, 497, 64) │ 18,496 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ max_pooling2d_50 (MaxPooling2D) │ (None, 23, 248, 64) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ global_average_pooling2d_6 │ (None, 64) │ 0 │ │ (GlobalAveragePooling2D) │ │ │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense_26 (Dense) │ (None, 128) │ 8,320 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dropout_13 (Dropout) │ (None, 128) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense_27 (Dense) │ (None, 1) │ 129 │ └──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 81,797 (319.52 KB)
Trainable params: 27,265 (106.50 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 54,532 (213.02 KB)
test_loss, test_acc = model.evaluate(X_test, y_test)
print("Test Loss:", test_loss)
print("Test Accuracy:", test_acc)
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 65ms/step - accuracy: 0.8462 - loss: 0.2146 Test Loss: 0.21456041932106018 Test Accuracy: 0.8461538553237915
plt.figure()
plt.title("Model Accuracy")
plt.plot(history.history["accuracy"], label="train")
plt.plot(history.history["val_accuracy"], label="validation")
plt.legend()
plt.ylim([0, 1])
plt.show()
plt.figure()
plt.title("Model Loss")
plt.plot(history.history["loss"], label="train")
plt.plot(history.history["val_loss"], label="validation")
plt.legend()
plt.ylim([0, 1])
plt.show()
loss,accuracy = model.evaluate(X_test,y_test)
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 63ms/step - accuracy: 0.8462 - loss: 0.2146
y_pred = model.predict(X_test)
[1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 97ms/step
def convert_to_labels(predictions, threshold=0.5):
labels = []
for prob in predictions:
if prob >= threshold:
labels.append("Real")
else:
labels.append("Fake")
return labels
labels = convert_to_labels(y_pred)
print(labels)
['Real', 'Fake', 'Real', 'Real', 'Real', 'Real', 'Real', 'Real', 'Real', 'Fake', 'Real', 'Fake', 'Real']
labels = convert_to_labels(y_test)
print(labels)
['Real', 'Fake', 'Real', 'Real', 'Real', 'Real', 'Real', 'Real', 'Real', 'Fake', 'Fake', 'Real', 'Real']
import os
def extract_features_single_audio(filename, max_length = 1000):
features = []
audio, _ = librosa.load(filename, sr = 16000)
mfccs = librosa.feature.mfcc(y=audio, sr=16000, n_mfcc=100)
# Pad or trim the feature array to a fixed length
if mfccs.shape[1] < max_length:
mfccs = np.pad(mfccs, ((0, 0), (0, max_length - mfccs.shape[1])), mode='constant')
else:
mfccs = mfccs[:, :max_length]
features.append(mfccs)
return np.array(features)
def classify_an_audiosample(filename):
audio_features = extract_features_single_audio(realfilename)
print(audio_features.shape)
result_array = model.predict(audio_features)
print(convert_to_labels(result_array))
fakeaudioname = "AudioClassification/linus-to-musk-DEMO.mp3"
classify_an_audiosample(fakeaudioname)
(1, 100, 1000) [1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 62ms/step ['Fake']
realaudioname = "AudioClassification/linus-original-DEMO.mp3"
classify_an_audiosample(realaudioname)
(1, 100, 1000) [1m1/1[0m [32m━━━━━━━━━━━━━━━━━━━━[0m[37m[0m [1m0s[0m 16ms/step ['Fake']
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。