代码拉取完成,页面将自动刷新
### 此资源由 58学课资源站 收集整理 ###
# 想要获取完整课件资料 请访问:58xueke.com
# 百万资源 畅享学习
#
# coding: utf-8
import os
import torch
import torch.nn as nn
from transformers import BertTokenizer, AdamW, BertConfig
from torch.utils.data import DataLoader
from model import BertClassifier
from dataset import CNewsDataset
from tqdm import tqdm
from sklearn import metrics
from common import constants
def main():
# ----------------获取参数设置----------------
batch_size = 4
epochs = 10
learning_rate = 5e-6
device = 'cpu'
# ----------------数据读取与封装----------------
# 获取到dataset
train_dataset = CNewsDataset('data/cnew.train_debug.txt')
valid_dataset = CNewsDataset('data/cnew.val_debug.txt')
# 封装DataLoader,用于生成Batch
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
# ----------------模型加载----------------
# 读取BERT的配置文件
bert_config = BertConfig.from_pretrained(constants.BERT_PATH)
num_labels = len(train_dataset.labels)
# 初始化模型
model = BertClassifier(bert_config, num_labels).to(device)
# ----------------优化器与损失函数配置----------------
# 优化器
optimizer = AdamW(model.parameters(), lr=learning_rate)
# 损失函数
criterion = nn.CrossEntropyLoss()
best_f1 = 0
# ----------------模型训练过程----------------
for epoch in range(1, epochs+1):
losses = 0
accuracy = 0
model.train()
train_bar = tqdm(train_dataloader, ncols=100)
for input_ids, token_type_ids, attention_mask, label_id in train_bar:
# 梯度清零
model.zero_grad()
train_bar.set_description('Epoch %i train' % epoch)
# 传入数据,调用model.forward() [4, 10]
output = model(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
token_type_ids=token_type_ids.to(device),
)
# 计算loss
loss = criterion(output, label_id.to(device))
losses += loss.item()
# output [0.1, 0.05, ..., 0.23]
pred_labels = torch.argmax(output, dim=1)
acc = torch.sum(pred_labels == label_id.to(device)).item() / len(pred_labels)
accuracy += acc
loss.backward()
optimizer.step()
train_bar.set_postfix(loss=loss.item(), acc=acc)
average_loss = losses / len(train_dataloader)
average_acc = accuracy / len(train_dataloader)
print('\tTrain ACC:', average_acc, '\tLoss:', average_loss)
# ----------------模型验证过程----------------
model.eval()
losses = 0
pred_labels = []
true_labels = []
valid_bar = tqdm(valid_dataloader, ncols=100)
for input_ids, token_type_ids, attention_mask, label_id in valid_bar:
valid_bar.set_description('Epoch %i valid' % epoch)
output = model(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
token_type_ids=token_type_ids.to(device),
)
loss = criterion(output, label_id.to(device))
losses += loss.item()
pred_label = torch.argmax(output, dim=1)
acc = torch.sum(pred_label == label_id.to(device)).item() / len(pred_label)
valid_bar.set_postfix(loss=loss.item(), acc=acc)
pred_labels.extend(pred_label.cpu().numpy().tolist())
true_labels.extend(label_id.numpy().tolist())
average_loss = losses / len(valid_dataloader)
print('\tLoss:', average_loss)
# 分类报告
report = metrics.classification_report(true_labels, pred_labels, labels=valid_dataset.labels_id, target_names=valid_dataset.labels)
print('* Classification Report:')
print(report)
# f1 用来判断最优模型
f1 = metrics.f1_score(true_labels, pred_labels, labels=valid_dataset.labels_id, average='micro')
if not os.path.exists('models'):
os.makedirs('models')
# 判断并保存验证集上表现最好的模型
if f1 > best_f1:
best_f1 = f1
torch.save(model.state_dict(), 'models/best_model.pkl')
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。