Status: HARD difficulty: Hard
4. Median of Two Sorted Arrays
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
106 <= nums1[i], nums2[i] <= 106
Follow up:
The overall run time complexity should be
O(log (m+n))
.
To solve this problem, we need to understand "What is the use of median". In statistics, the median is used for dividing a set into two equal length subsets, that one subset is always greater than the other
. If we understand the use of median for dividing, we are very close to the answer.
First let's cut A into two parts at a random position i:
left_A | right_A
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
Since A has m elements, so there are m+1 kinds of cutting( i = 0 ~ m ). And we know: len(left_A) = i, len(right_A) = m - i . Note: when i = 0 , left_A is empty, and when i = m , right_A is empty.
With the same way, cut B into two parts at a random position j:
left_B | right_B
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
Put left_A and left_B into one set, and put right_A and right_B into another set. Let's name them left_part and right_part :
left_part | right_part
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
If we can ensure:
1) len(left_part) == len(right_part)
2) max(left_part) <= min(right_part)
then we divide all elements in {A, B} into two parts with equal length, and one part is always greater than the other. Then median = (max(left_part) + min(right_part))/2.
To ensure these two conditions, we just need to ensure:
(1) i + j == m - i + n - j (or: m - i + n - j + 1)
if n >= m, we just need to set: i = 0 ~ m, j = (m + n + 1)/2 - i
(2) B[j-1] <= A[i] and A[i-1] <= B[j]
ps.1 For simplicity, I presume A[i-1],B[j-1],A[i],B[j] are always valid even if i=0/i=m/j=0/j=n . I will talk about how to deal with these edge values at last.
ps.2 Why n >= m
? Because I have to make sure j
is non-nagative since 0 <= i <= m
and j = (m + n + 1)/2 - i
. If n < m
, then j
may be nagative, that will lead to wrong result.
So, all we need to do is:
Searching i in [0, m], to find an object i that:
B[j-1] <= A[i] and A[i-1] <= B[j], ( where j = (m + n + 1)/2 - i )
And we can do a binary search following steps described below:
<1> Set imin = 0, imax = m, then start searching in [imin, imax]
<2> Set i = (imin + imax)/2, j = (m + n + 1)/2 - i
<3> Now we have len(left_part)==len(right_part). And there are only 3 situations
that we may encounter:
<a> B[j-1] <= A[i] and A[i-1] <= B[j]
Means we have found the object `i`, so stop searching.
<b> B[j-1] > A[i]
Means A[i] is too small. We must `ajust` i to get `B[j-1] <= A[i]`.
Can we `increase` i?
Yes. Because when i is increased, j will be decreased.
So B[j-1] is decreased and A[i] is increased, and `B[j-1] <= A[i]` may
be satisfied.
Can we `decrease` i?
`No!` Because when i is decreased, j will be increased.
So B[j-1] is increased and A[i] is decreased, and B[j-1] <= A[i] will
be never satisfied.
So we must `increase` i. That is, we must ajust the searching range to
[i+1, imax]. So, set imin = i+1, and goto <2>.
<c> A[i-1] > B[j]
Means A[i-1] is too big. And we must `decrease` i to get `A[i-1]<=B[j]`.
That is, we must ajust the searching range to [imin, i-1].
So, set imax = i-1, and goto <2>.
When the object i is found, the median is:
max(A[i-1], B[j-1]) (when m + n is odd)
or (max(A[i-1], B[j-1]) + min(A[i], B[j]))/2 (when m + n is even)
Now let's consider the edges values i=0,i=m,j=0,j=n where A[i-1],B[j-1],A[i],B[j] may not exist. Actually this situation is easier than you think.
What we need to do is ensuring that max(left_part) <= min(right_part)
. So, if i and j are not edges values(means A[i-1],B[j-1],A[i],B[j] all exist), then we must check both B[j-1] <= A[i] and A[i-1] <= B[j]. But if some of A[i-1],B[j-1],A[i],B[j] don't exist, then we don't need to check one(or both) of these two conditions. For example, if i=0, then A[i-1] doesn't exist, then we don't need to check A[i-1] <= B[j]. So, what we need to do is:
Searching i in [0, m], to find an object `i` that:
(j == 0 or i == m or B[j-1] <= A[i]) and
(i == 0 or j == n or A[i-1] <= B[j])
where j = (m + n + 1)/2 - i
And in a searching loop, we will encounter only three situations:
<a> (j == 0 or i == m or B[j-1] <= A[i]) and
(i == 0 or j = n or A[i-1] <= B[j])
Means i is perfect, we can stop searching.
<b> j > 0 and i < m and B[j - 1] > A[i]
Means i is too small, we must increase it.
<c> i > 0 and j < n and A[i - 1] > B[j]
Means i is too big, we must decrease it.
Thank @Quentin.chen , him pointed out that: i < m ==> j > 0
and i > 0 ==> j < n
. Because:
m <= n, i < m ==> j = (m+n+1)/2 - i > (m+n+1)/2 - m >= (2*m+1)/2 - m >= 0
m <= n, i > 0 ==> j = (m+n+1)/2 - i < (m+n+1)/2 <= (2*n+1)/2 <= n
So in situation and , we don't need to check whether j > 0
and whether j < n
.
Below is the accepted code:
def median(A, B):
m, n = len(A), len(B)
if m > n:
A, B, m, n = B, A, n, m
if n == 0:
raise ValueError
imin, imax, half_len = 0, m, (m + n + 1) / 2
while imin <= imax:
i = (imin + imax) / 2
j = half_len - i
if i < m and B[j-1] > A[i]:
# i is too small, must increase it
imin = i + 1
elif i > 0 and A[i-1] > B[j]:
# i is too big, must decrease it
imax = i - 1
else:
# i is perfect
if i == 0: max_of_left = B[j-1]
elif j == 0: max_of_left = A[i-1]
else: max_of_left = max(A[i-1], B[j-1])
if (m + n) % 2 == 1:
return max_of_left
if i == m: min_of_right = B[j]
elif j == n: min_of_right = A[i]
else: min_of_right = min(A[i], B[j])
return (max_of_left + min_of_right) / 2.0
class Solution {
public:
double mediann(vector<int>&a,vector<int>&b){
int m=a.size();
int n=b.size();
if(m>n)
return mediann(b,a);
int l=0,r=m;
while(l<=r){
int partx=l+(r-l)/2;
int party=(m+n+1)/2-partx;
int maxlx=(partx==0)?INT_MIN:a[partx-1];
int minrx=(partx==m)?INT_MAX:a[partx];
int maxly=(party==0)?INT_MIN:b[party-1];
int minry=(party==n)?INT_MAX:b[party];
if(maxlx<=minry&&maxly<=minrx){
if((m+n)%2==0)
return (double)(max(maxlx,maxly)+min(minrx,minry))/2;
else
return (double)(max(maxlx,maxly));
}else if(maxlx>minry)
r=partx-1;
else
l=partx+1;
}
return -1.0;
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
double ans;
ans=mediann(nums1,nums2);
return ans;
}
};
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。