代码拉取完成,页面将自动刷新
package com.fishercoder.solutions;
/**
* 304. Range Sum Query 2D - Immutable
*
* Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
Note:
You may assume that the matrix does not change.
There are many calls to sumRegion function.
You may assume that row1 ≤ row2 and col1 ≤ col2.
*/
public class _304 {
public static class Solution1 {
public class NumMatrix {
public NumMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return;
}
/**The dimensions of this tot matrix is actually 1 bigger than the given matrix, cool!*/
tot = new int[matrix.length + 1][matrix[0].length + 1];
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
tot[i + 1][j + 1] =
matrix[i][j] + tot[i + 1][j] + tot[i][j + 1] - tot[i][j];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
return tot[row2 + 1][col2 + 1] - tot[row2 + 1][col1] - tot[row1][col2 + 1]
+ tot[row1][col1];
}
int[][] tot;
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。