1 Star 0 Fork 0

JJustRight/ACM-ICPC-Algorithms

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

Euler's Totient Function

Euler’s Totient function Φ(n) for an input n is count of numbers in {1, 2, 3, …, n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1.

Φ(1) = 1
gcd(1, 1) is 1

Φ(2) = 1
gcd(1, 2) is 1, but gcd(2, 2) is 2.

Φ(3) = 2
gcd(1, 3) is 1 and gcd(2, 3) is 1

Φ(4) = 2
gcd(1, 4) is 1 and gcd(3, 4) is 1

Φ(5) = 4
gcd(1, 5) is 1, gcd(2, 5) is 1, 
gcd(3, 5) is 1 and gcd(4, 5) is 1

Φ(6) = 2
gcd(1, 6) is 1 and gcd(5, 6) is 1

How to compute Φ(n) for an input n?

A simple solution is to iterate through all numbers from 1 to n-1 and count numbers with gcd with n as 1.

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/jjustright/ACM-ICPC-Algorithms.git
git@gitee.com:jjustright/ACM-ICPC-Algorithms.git
jjustright
ACM-ICPC-Algorithms
ACM-ICPC-Algorithms
master

搜索帮助