代码拉取完成,页面将自动刷新
/* Copyright (c) 2023, Canaan Bright Sight Co., Ltd
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.f
*/
#include "pose_detect.h"
#include "utils.h"
// for image
poseDetect::poseDetect(const char *kmodel_file, float obj_thresh,float nms_thresh, const int debug_mode): obj_thresh_(obj_thresh),nms_thresh_(nms_thresh), AIBase(kmodel_file,"poseDetect", debug_mode)
{
model_name_ = "poseDetect";
ai2d_out_tensor_ = get_input_tensor(0);
}
// for video
poseDetect::poseDetect(const char *kmodel_file, float obj_thresh,float nms_thresh, FrameCHWSize isp_shape, uintptr_t vaddr, uintptr_t paddr, const int debug_mode): obj_thresh_(obj_thresh),nms_thresh_(nms_thresh), AIBase(kmodel_file,"poseDetect", debug_mode)
{
model_name_ = "poseDetect";
vaddr_ = vaddr;
isp_shape_ = isp_shape;
dims_t in_shape{1, isp_shape_.channel, isp_shape_.height, isp_shape_.width};
int isp_size = isp_shape_.channel * isp_shape_.height * isp_shape_.width;
#if 0
ai2d_in_tensor_ = host_runtime_tensor::create(typecode_t::dt_uint8, in_shape, { (gsl::byte *)vaddr, isp_size },
true, hrt::pool_shared).expect("cannot create input tensor");
#else
ai2d_in_tensor_ = hrt::create(typecode_t::dt_uint8, in_shape, hrt::pool_shared).expect("create ai2d input tensor failed");
#endif
// ai2d_out_tensor
ai2d_out_tensor_ = get_input_tensor(0);
// fixed padding resize param
Utils::padding_resize_params(params,isp_shape_, {input_shapes_[0][3], input_shapes_[0][2]}, ai2d_builder_, ai2d_in_tensor_, ai2d_out_tensor_, cv::Scalar(114, 114, 114));
}
poseDetect::~poseDetect()
{
}
// ai2d for image
void poseDetect::pre_process(cv::Mat ori_img)
{
ScopedTiming st(model_name_ + " pre_process image", debug_mode_);
std::vector<uint8_t> chw_vec;
Utils::hwc_to_chw(ori_img, chw_vec);
Utils::padding_resize_params(params,{ori_img.channels(), ori_img.rows, ori_img.cols}, chw_vec, {input_shapes_[0][3], input_shapes_[0][2]}, ai2d_out_tensor_, cv::Scalar(114, 114, 114));
}
// ai2d for video
void poseDetect::pre_process()
{
ScopedTiming st(model_name_ + " pre_process video", debug_mode_);
#if 0
ai2d_builder_->invoke().expect("error occurred in ai2d running");
#else
size_t isp_size = isp_shape_.channel * isp_shape_.height * isp_shape_.width;
auto buf = ai2d_in_tensor_.impl()->to_host().unwrap()->buffer().as_host().unwrap().map(map_access_::map_write).unwrap().buffer();
memcpy(reinterpret_cast<char *>(buf.data()), (void *)vaddr_, isp_size);
hrt::sync(ai2d_in_tensor_, sync_op_t::sync_write_back, true).expect("sync write_back failed");
ai2d_builder_->invoke(ai2d_in_tensor_,ai2d_out_tensor_).expect("error occurred in ai2d running");
// run ai2d
#endif
}
void poseDetect::inference()
{
this->run();
this->get_output();
}
bool poseDetect::BatchDetect( float* all_data, std::vector<std::vector<OutputPose>>& output,cv::Vec4d params)
{
_outputTensorShape = { output_shapes_[0][0], output_shapes_[0][1], output_shapes_[0][2] };
_anchorLength = output_shapes_[0][1];
// [1, 56 ,8400] -> [1, 8400, 56]
cv::Mat output0 = cv::Mat(cv::Size((int)_outputTensorShape[2], (int)_outputTensorShape[1]), CV_32F, all_data).t();
float* pdata = (float*)output0.data; // [classid,x,y,w,h,x,y,...21个点]
int rows = output0.rows; // 预测框的数量 8400
// 一张图片的预测框
vector<float> confidences;
vector<Rect> boxes;
vector<int> labels;
vector<vector<float>> kpss;
for (int r=0; r<rows; ++r){
// 得到人类别概率
auto kps_ptr = pdata + 5;
// 预测框坐标映射到原图上
float score = pdata[4];
if(score > obj_thresh_){
float x = (pdata[0] - params[2]) / params[0]; //x
float y = (pdata[1] - params[3]) / params[1]; //y
float w = pdata[2] / params[0]; //w
float h = pdata[3] / params[1]; //h
float left = MAX(int(x - 0.5 *w +0.5), 0);
float top = MAX(int(y - 0.5*h + 0.5), 0);
std::vector<float> kps;
for (int k=0; k< 17; k++){
float kps_x = (*(kps_ptr + 3 * k) - params[2]) / params[0];
float kps_y = (*(kps_ptr + 3 * k + 1) - params[3]) / params[1];
float kps_s = *(kps_ptr + 3 * k + 2);
kps.push_back(kps_x);
kps.push_back(kps_y);
kps.push_back(kps_s);
}
confidences.push_back(score);
labels.push_back(0);
kpss.push_back(kps);
boxes.push_back(Rect(left, top, float(w + 0.5), float(h + 0.5)));
}
pdata += _anchorLength; //下一个预测框
}
// 对一张图的预测框执行NMS处理
vector<int> nms_result;
std::vector<BoxInfo> boxinfo_results;
BoxInfo res;
float x1,y1,x2,y2,score_;
int label,idx;
for(int i=0;i<boxes.size();i++)
{
x1 = float( boxes[i].tl().x ) ;
y1 = float( boxes[i].tl().y ) ;
x2 = float( boxes[i].br().x ) ;
y2 = float( boxes[i].br().y ) ;
score_ = confidences[i];
label = labels[i];
idx = i;
res = { x1,y1,x2,y2,score_,label,idx };
boxinfo_results.push_back(res);
}
Utils::nms_pose(boxinfo_results, nms_thresh_,nms_result);
// 对一张图片:依据NMS处理得到的索引,得到类别id、confidence、box,并置于结构体OutputDet的容器中
vector<OutputPose> temp_output;
for (size_t i=0; i<boxinfo_results.size(); ++i){
int idx = boxinfo_results[i].idx;
OutputPose result;
result.confidence = confidences[idx];
result.box = boxes[idx];
result.label = labels[idx];
result.kps = kpss[idx];
temp_output.push_back(result);
}
output.push_back(temp_output); // 多张图片的输出;添加一张图片的输出置于此容器中
if (output.size())
return true;
else
return false;
}
bool poseDetect::Detect(float* all_data, std::vector<OutputPose> &output,cv::Vec4d params){
vector<vector<OutputPose>> temp_output;
bool flag = BatchDetect(all_data, temp_output,params);
output = temp_output[0];
return true;
}
bool poseDetect::post_process( std::vector<OutputPose> &output,cv::Vec4d params)
{
ScopedTiming st(model_name_ + " post_process video", debug_mode_);
foutput_0 = p_outputs_[0];
bool find_ = Detect(foutput_0,output,params);
return find_;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。