1 Star 0 Fork 1

lerchou/gmm

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
README 1.09 KB
一键复制 编辑 原始数据 按行查看 历史
Jeremy Stober 提交于 2011-11-09 15:28 . Better written README.
Gaussian Mixture Models in Python
Author: Jeremy Stober
Contact: stober@gmail.com
Version: 0.01
This is a standalone Pythonic implementation of Gaussian Mixture
Models. Various initialization strategies are included along with a
standard EM algorithm for determining the model parameters based on
data.
Example code for the GMM and Normal classes can be found in the
src/test_*.py files. The GMM and the underlying Normal class both
support conditioning on data and marginalization for any subset of the
variables. This makes this implementation ideal for experimenting with
Gaussian Mixture Regression. For example, the following code learns
the cosine function:
import numpy as np
from gmm import GMM
from plot_gmm import draw2dgmm
from test_func import noisy_cosine
import pylab as pl
x,y = noisy_cosine()
data = np.vstack([x,y]).transpose()
pl.scatter(data[:,0],data[:,1])
gmm = GMM(dim = 2, ncomps = 2, data = data, method = "kmeans")
draw2dgmm(gmm)
nx = np.arange(0,2 * np.pi, 0.1)
ny = []
for i in nx:
ngmm = gmm.condition([0],[i])
ny.append(ngmm.mean())
pl.plot(nx,ny,color='red')
pl.show()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/lerchou/gmm.git
git@gitee.com:lerchou/gmm.git
lerchou
gmm
gmm
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385