Architecture | Results | Examples | Documentation
TensorRT-LLM is an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM contains components to create Python and C++ runtimes that execute those TensorRT engines. It also includes a backend for integration with the NVIDIA Triton Inference Server; a production-quality system to serve LLMs. Models built with TensorRT-LLM can be executed on a wide range of configurations going from a single GPU to multiple nodes with multiple GPUs (using Tensor Parallelism and/or Pipeline Parallelism).
The TensorRT-LLM Python API architecture looks similar to the
PyTorch API. It provides a
functional module containing functions like
einsum
, softmax
, matmul
or view
. The layers
module bundles useful building blocks to assemble LLMs; like an Attention
block, a MLP
or the entire Transformer
layer. Model-specific components,
like GPTAttention
or BertAttention
, can be found in the
models module.
TensorRT-LLM comes with several popular models pre-defined. They can easily be modified and extended to fit custom needs. Refer to the Support Matrix for a list of supported models.
To maximize performance and reduce memory footprint, TensorRT-LLM allows the
models to be executed using different quantization modes (refer to
support matrix
). TensorRT-LLM supports
INT4 or INT8 weights (and FP16 activations; a.k.a. INT4/INT8 weight-only) as
well as a complete implementation of the
SmoothQuant technique.
To get started with TensorRT-LLM, visit our documentation:
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。