代码拉取完成,页面将自动刷新
/*
Copyright IBM Corp. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
*/
package idemix
import (
"crypto/ecdsa"
"sort"
"github.com/hyperledger/fabric-amcl/amcl"
"github.com/hyperledger/fabric-amcl/amcl/FP256BN"
"github.com/hyperledger/fabric/common/flogging"
"github.com/pkg/errors"
)
var idemixLogger = flogging.MustGetLogger("idemix")
// signLabel is the label used in zero-knowledge proof (ZKP) to identify that this ZKP is a signature of knowledge
const signLabel = "sign"
// A signature that is produced using an Identity Mixer credential is a so-called signature of knowledge
// (for details see C.P.Schnorr "Efficient Identification and Signatures for Smart Cards")
// An Identity Mixer signature is a signature of knowledge that signs a message and proves (in zero-knowledge)
// the knowledge of the user secret (and possibly attributes) signed inside a credential
// that was issued by a certain issuer (referred to with the issuer public key)
// The signature is verified using the message being signed and the public key of the issuer
// Some of the attributes from the credential can be selectvely disclosed or different statements can be proven about
// credential atrributes without diclosing them in the clear
// The difference between a standard signature using X.509 certificates and an Identity Mixer signature is
// the advanced privacy features provided by Identity Mixer (due to zero-knowledge proofs):
// - Unlinkability of the signatures produced with the same credential
// - Selective attribute disclosure and predicates over attributes
// Make a slice of all the attribute indices that will not be disclosed
func hiddenIndices(Disclosure []byte) []int {
HiddenIndices := make([]int, 0)
for index, disclose := range Disclosure {
if disclose == 0 {
HiddenIndices = append(HiddenIndices, index)
}
}
return HiddenIndices
}
// NewSignature creates a new idemix signature (Schnorr-type signature)
// The []byte Disclosure steers which attributes are disclosed:
// if Disclosure[i] == 0 then attribute i remains hidden and otherwise it is disclosed.
// We require the revocation handle to remain undisclosed (i.e., Disclosure[rhIndex] == 0).
// We use the zero-knowledge proof by http://eprint.iacr.org/2016/663.pdf, Sec. 4.5 to prove knowledge of a BBS+ signature
func NewSignature(cred *Credential, sk *FP256BN.BIG, Nym *FP256BN.ECP, RNym *FP256BN.BIG, ipk *IssuerPublicKey, Disclosure []byte, msg []byte, rhIndex int, cri *CredentialRevocationInformation, rng *amcl.RAND) (*Signature, error) {
// Validate inputs
if cred == nil || sk == nil || Nym == nil || RNym == nil || ipk == nil || rng == nil || cri == nil {
return nil, errors.Errorf("cannot create idemix signature: received nil input")
}
if rhIndex < 0 || rhIndex >= len(ipk.AttributeNames) || len(Disclosure) != len(ipk.AttributeNames) {
return nil, errors.Errorf("cannot create idemix signature: received invalid input")
}
if cri.RevocationAlg != int32(ALG_NO_REVOCATION) && Disclosure[rhIndex] == 1 {
return nil, errors.Errorf("Attribute %d is disclosed but also used as revocation handle attribute, which should remain hidden.", rhIndex)
}
// locate the indices of the attributes to hide and sample randomness for them
HiddenIndices := hiddenIndices(Disclosure)
// Generate required randomness r_1, r_2
r1 := RandModOrder(rng)
r2 := RandModOrder(rng)
// Set r_3 as \frac{1}{r_1}
r3 := FP256BN.NewBIGcopy(r1)
r3.Invmodp(GroupOrder)
// Sample a nonce
Nonce := RandModOrder(rng)
// Parse credential
A := EcpFromProto(cred.A)
B := EcpFromProto(cred.B)
// Randomize credential
// Compute A' as A^{r_!}
APrime := FP256BN.G1mul(A, r1)
// Compute ABar as A'^{-e} b^{r1}
ABar := FP256BN.G1mul(B, r1)
ABar.Sub(FP256BN.G1mul(APrime, FP256BN.FromBytes(cred.E)))
// Compute B' as b^{r1} / h_r^{r2}, where h_r is h_r
BPrime := FP256BN.G1mul(B, r1)
HRand := EcpFromProto(ipk.HRand)
// Parse h_{sk} from ipk
HSk := EcpFromProto(ipk.HSk)
BPrime.Sub(FP256BN.G1mul(HRand, r2))
S := FP256BN.FromBytes(cred.S)
E := FP256BN.FromBytes(cred.E)
// Compute s' as s - r_2 \cdot r_3
sPrime := Modsub(S, FP256BN.Modmul(r2, r3, GroupOrder), GroupOrder)
// The rest of this function constructs the non-interactive zero knowledge proof
// that links the signature, the non-disclosed attributes and the nym.
// Sample the randomness used to compute the commitment values (aka t-values) for the ZKP
rSk := RandModOrder(rng)
re := RandModOrder(rng)
rR2 := RandModOrder(rng)
rR3 := RandModOrder(rng)
rSPrime := RandModOrder(rng)
rRNym := RandModOrder(rng)
rAttrs := make([]*FP256BN.BIG, len(HiddenIndices))
for i := range HiddenIndices {
rAttrs[i] = RandModOrder(rng)
}
// First compute the non-revocation proof.
// The challenge of the ZKP needs to depend on it, as well.
prover, err := getNonRevocationProver(RevocationAlgorithm(cri.RevocationAlg))
if err != nil {
return nil, err
}
nonRevokedProofHashData, err := prover.getFSContribution(
FP256BN.FromBytes(cred.Attrs[rhIndex]),
rAttrs[sort.SearchInts(HiddenIndices, rhIndex)],
cri,
rng,
)
if err != nil {
return nil, errors.Wrap(err, "failed to compute non-revoked proof")
}
// Step 1: First message (t-values)
// t1 is related to knowledge of the credential (recall, it is a BBS+ signature)
t1 := APrime.Mul2(re, HRand, rR2) // A'^{r_E} \cdot h_r^{r_{r2}}
// t2: is related to knowledge of the non-disclosed attributes that signed in (A,B,S,E)
t2 := FP256BN.G1mul(HRand, rSPrime) // h_r^{r_{s'}}
t2.Add(BPrime.Mul2(rR3, HSk, rSk)) // B'^{r_{r3}} \cdot h_{sk}^{r_{sk}}
for i := 0; i < len(HiddenIndices)/2; i++ {
t2.Add(
// \cdot h_{2 \cdot i}^{r_{attrs,i}
EcpFromProto(ipk.HAttrs[HiddenIndices[2*i]]).Mul2(
rAttrs[2*i],
EcpFromProto(ipk.HAttrs[HiddenIndices[2*i+1]]),
rAttrs[2*i+1],
),
)
}
if len(HiddenIndices)%2 != 0 {
t2.Add(FP256BN.G1mul(EcpFromProto(ipk.HAttrs[HiddenIndices[len(HiddenIndices)-1]]), rAttrs[len(HiddenIndices)-1]))
}
// t3 is related to the knowledge of the secrets behind the pseudonym, which is also signed in (A,B,S,E)
t3 := HSk.Mul2(rSk, HRand, rRNym) // h_{sk}^{r_{sk}} \cdot h_r^{r_{rnym}}
// Step 2: Compute the Fiat-Shamir hash, forming the challenge of the ZKP.
// Compute the Fiat-Shamir hash, forming the challenge of the ZKP.
// proofData is the data being hashed, it consists of:
// the signature label
// 7 elements of G1 each taking 2*FieldBytes+1 bytes
// one bigint (hash of the issuer public key) of length FieldBytes
// disclosed attributes
// message being signed
// the amount of bytes needed for the nonrevocation proof
proofData := make([]byte, len([]byte(signLabel))+7*(2*FieldBytes+1)+FieldBytes+len(Disclosure)+len(msg)+ProofBytes[RevocationAlgorithm(cri.RevocationAlg)])
index := 0
index = appendBytesString(proofData, index, signLabel)
index = appendBytesG1(proofData, index, t1)
index = appendBytesG1(proofData, index, t2)
index = appendBytesG1(proofData, index, t3)
index = appendBytesG1(proofData, index, APrime)
index = appendBytesG1(proofData, index, ABar)
index = appendBytesG1(proofData, index, BPrime)
index = appendBytesG1(proofData, index, Nym)
index = appendBytes(proofData, index, nonRevokedProofHashData)
copy(proofData[index:], ipk.Hash)
index = index + FieldBytes
copy(proofData[index:], Disclosure)
index = index + len(Disclosure)
copy(proofData[index:], msg)
c := HashModOrder(proofData)
// add the previous hash and the nonce and hash again to compute a second hash (C value)
index = 0
proofData = proofData[:2*FieldBytes]
index = appendBytesBig(proofData, index, c)
index = appendBytesBig(proofData, index, Nonce)
ProofC := HashModOrder(proofData)
// Step 3: reply to the challenge message (s-values)
ProofSSk := Modadd(rSk, FP256BN.Modmul(ProofC, sk, GroupOrder), GroupOrder) // s_sk = rSK + C \cdot sk
ProofSE := Modsub(re, FP256BN.Modmul(ProofC, E, GroupOrder), GroupOrder) // s_e = re + C \cdot E
ProofSR2 := Modadd(rR2, FP256BN.Modmul(ProofC, r2, GroupOrder), GroupOrder) // s_r2 = rR2 + C \cdot r2
ProofSR3 := Modsub(rR3, FP256BN.Modmul(ProofC, r3, GroupOrder), GroupOrder) // s_r3 = rR3 + C \cdot r3
ProofSSPrime := Modadd(rSPrime, FP256BN.Modmul(ProofC, sPrime, GroupOrder), GroupOrder) // s_S' = rSPrime + C \cdot sPrime
ProofSRNym := Modadd(rRNym, FP256BN.Modmul(ProofC, RNym, GroupOrder), GroupOrder) // s_RNym = rRNym + C \cdot RNym
ProofSAttrs := make([][]byte, len(HiddenIndices))
for i, j := range HiddenIndices {
ProofSAttrs[i] = BigToBytes(
// s_attrsi = rAttrsi + C \cdot cred.Attrs[j]
Modadd(rAttrs[i], FP256BN.Modmul(ProofC, FP256BN.FromBytes(cred.Attrs[j]), GroupOrder), GroupOrder),
)
}
// Compute the revocation part
nonRevokedProof, err := prover.getNonRevokedProof(ProofC)
if err != nil {
return nil, err
}
// We are done. Return signature
return &Signature{
APrime: EcpToProto(APrime),
ABar: EcpToProto(ABar),
BPrime: EcpToProto(BPrime),
ProofC: BigToBytes(ProofC),
ProofSSk: BigToBytes(ProofSSk),
ProofSE: BigToBytes(ProofSE),
ProofSR2: BigToBytes(ProofSR2),
ProofSR3: BigToBytes(ProofSR3),
ProofSSPrime: BigToBytes(ProofSSPrime),
ProofSAttrs: ProofSAttrs,
Nonce: BigToBytes(Nonce),
Nym: EcpToProto(Nym),
ProofSRNym: BigToBytes(ProofSRNym),
RevocationEpochPk: cri.EpochPk,
RevocationPkSig: cri.EpochPkSig,
Epoch: cri.Epoch,
NonRevocationProof: nonRevokedProof},
nil
}
// Ver verifies an idemix signature
// Disclosure steers which attributes it expects to be disclosed
// attributeValues contains the desired attribute values.
// This function will check that if attribute i is disclosed, the i-th attribute equals attributeValues[i].
func (sig *Signature) Ver(Disclosure []byte, ipk *IssuerPublicKey, msg []byte, attributeValues []*FP256BN.BIG, rhIndex int, revPk *ecdsa.PublicKey, epoch int) error {
// Validate inputs
if ipk == nil || revPk == nil {
return errors.Errorf("cannot verify idemix signature: received nil input")
}
if rhIndex < 0 || rhIndex >= len(ipk.AttributeNames) || len(Disclosure) != len(ipk.AttributeNames) {
return errors.Errorf("cannot verify idemix signature: received invalid input")
}
if sig.NonRevocationProof.RevocationAlg != int32(ALG_NO_REVOCATION) && Disclosure[rhIndex] == 1 {
return errors.Errorf("Attribute %d is disclosed but is also used as revocation handle, which should remain hidden.", rhIndex)
}
HiddenIndices := hiddenIndices(Disclosure)
// Parse signature
APrime := EcpFromProto(sig.GetAPrime())
ABar := EcpFromProto(sig.GetABar())
BPrime := EcpFromProto(sig.GetBPrime())
Nym := EcpFromProto(sig.GetNym())
ProofC := FP256BN.FromBytes(sig.GetProofC())
ProofSSk := FP256BN.FromBytes(sig.GetProofSSk())
ProofSE := FP256BN.FromBytes(sig.GetProofSE())
ProofSR2 := FP256BN.FromBytes(sig.GetProofSR2())
ProofSR3 := FP256BN.FromBytes(sig.GetProofSR3())
ProofSSPrime := FP256BN.FromBytes(sig.GetProofSSPrime())
ProofSRNym := FP256BN.FromBytes(sig.GetProofSRNym())
ProofSAttrs := make([]*FP256BN.BIG, len(sig.GetProofSAttrs()))
if len(sig.ProofSAttrs) != len(HiddenIndices) {
return errors.Errorf("signature invalid: incorrect amount of s-values for AttributeProofSpec")
}
for i, b := range sig.ProofSAttrs {
ProofSAttrs[i] = FP256BN.FromBytes(b)
}
Nonce := FP256BN.FromBytes(sig.GetNonce())
// Parse issuer public key
W := Ecp2FromProto(ipk.W)
HRand := EcpFromProto(ipk.HRand)
HSk := EcpFromProto(ipk.HSk)
// Verify signature
if APrime.Is_infinity() {
return errors.Errorf("signature invalid: APrime = 1")
}
temp1 := FP256BN.Ate(W, APrime)
temp2 := FP256BN.Ate(GenG2, ABar)
temp2.Inverse()
temp1.Mul(temp2)
if !FP256BN.Fexp(temp1).Isunity() {
return errors.Errorf("signature invalid: APrime and ABar don't have the expected structure")
}
// Verify ZK proof
// Recover t-values
// Recompute t1
t1 := APrime.Mul2(ProofSE, HRand, ProofSR2)
temp := FP256BN.NewECP()
temp.Copy(ABar)
temp.Sub(BPrime)
t1.Sub(FP256BN.G1mul(temp, ProofC))
// Recompute t2
t2 := FP256BN.G1mul(HRand, ProofSSPrime)
t2.Add(BPrime.Mul2(ProofSR3, HSk, ProofSSk))
for i := 0; i < len(HiddenIndices)/2; i++ {
t2.Add(EcpFromProto(ipk.HAttrs[HiddenIndices[2*i]]).Mul2(ProofSAttrs[2*i], EcpFromProto(ipk.HAttrs[HiddenIndices[2*i+1]]), ProofSAttrs[2*i+1]))
}
if len(HiddenIndices)%2 != 0 {
t2.Add(FP256BN.G1mul(EcpFromProto(ipk.HAttrs[HiddenIndices[len(HiddenIndices)-1]]), ProofSAttrs[len(HiddenIndices)-1]))
}
temp = FP256BN.NewECP()
temp.Copy(GenG1)
for index, disclose := range Disclosure {
if disclose != 0 {
temp.Add(FP256BN.G1mul(EcpFromProto(ipk.HAttrs[index]), attributeValues[index]))
}
}
t2.Add(FP256BN.G1mul(temp, ProofC))
// Recompute t3
t3 := HSk.Mul2(ProofSSk, HRand, ProofSRNym)
t3.Sub(Nym.Mul(ProofC))
// add contribution from the non-revocation proof
nonRevokedVer, err := getNonRevocationVerifier(RevocationAlgorithm(sig.NonRevocationProof.RevocationAlg))
if err != nil {
return err
}
i := sort.SearchInts(HiddenIndices, rhIndex)
proofSRh := ProofSAttrs[i]
nonRevokedProofBytes, err := nonRevokedVer.recomputeFSContribution(sig.NonRevocationProof, ProofC, Ecp2FromProto(sig.RevocationEpochPk), proofSRh)
if err != nil {
return err
}
// Recompute challenge
// proofData is the data being hashed, it consists of:
// the signature label
// 7 elements of G1 each taking 2*FieldBytes+1 bytes
// one bigint (hash of the issuer public key) of length FieldBytes
// disclosed attributes
// message that was signed
proofData := make([]byte, len([]byte(signLabel))+7*(2*FieldBytes+1)+FieldBytes+len(Disclosure)+len(msg)+ProofBytes[RevocationAlgorithm(sig.NonRevocationProof.RevocationAlg)])
index := 0
index = appendBytesString(proofData, index, signLabel)
index = appendBytesG1(proofData, index, t1)
index = appendBytesG1(proofData, index, t2)
index = appendBytesG1(proofData, index, t3)
index = appendBytesG1(proofData, index, APrime)
index = appendBytesG1(proofData, index, ABar)
index = appendBytesG1(proofData, index, BPrime)
index = appendBytesG1(proofData, index, Nym)
index = appendBytes(proofData, index, nonRevokedProofBytes)
copy(proofData[index:], ipk.Hash)
index = index + FieldBytes
copy(proofData[index:], Disclosure)
index = index + len(Disclosure)
copy(proofData[index:], msg)
c := HashModOrder(proofData)
index = 0
proofData = proofData[:2*FieldBytes]
index = appendBytesBig(proofData, index, c)
index = appendBytesBig(proofData, index, Nonce)
if *ProofC != *HashModOrder(proofData) {
// This debug line helps identify where the mismatch happened
idemixLogger.Debugf("Signature Verification : \n"+
" [t1:%v]\n,"+
" [t2:%v]\n,"+
" [t3:%v]\n,"+
" [APrime:%v]\n,"+
" [ABar:%v]\n,"+
" [BPrime:%v]\n,"+
" [Nym:%v]\n,"+
" [nonRevokedProofBytes:%v]\n,"+
" [ipk.Hash:%v]\n,"+
" [Disclosure:%v]\n,"+
" [msg:%v]\n,",
EcpToBytes(t1),
EcpToBytes(t2),
EcpToBytes(t3),
EcpToBytes(APrime),
EcpToBytes(ABar),
EcpToBytes(BPrime),
EcpToBytes(Nym),
nonRevokedProofBytes,
ipk.Hash,
Disclosure,
msg)
return errors.Errorf("signature invalid: zero-knowledge proof is invalid")
}
// Signature is valid
return nil
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。