代码拉取完成,页面将自动刷新
import numpy as np
import pandas as pd
import pdb
import re
from time import time
import json
import random
import os
import model
import paths
from scipy.spatial.distance import pdist, squareform
from scipy.stats import multivariate_normal, invgamma, mode
from scipy.special import gamma
from scipy.misc import imresize
from functools import partial
from math import ceil
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.preprocessing import MinMaxScaler
# --- to do with loading --- #
def get_samples_and_labels(settings):
"""
Parse settings options to load or generate correct type of data,
perform test/train split as necessary, and reform into 'samples' and 'labels'
dictionaries.
"""
if settings['data_load_from']:
data_path = './experiments/data/' + settings['data_load_from'] + '.data.npy'
print('Loading data from', data_path)
samples, pdf, labels = get_data('load', data_path)
train, vali, test = samples['train'], samples['vali'], samples['test']
train_labels, vali_labels, test_labels = labels['train'], labels['vali'], labels['test']
del samples, labels
elif settings['data'] == 'eICU_task':
# always load eICU
samples, pdf, labels = get_data('eICU_task', {})
# del samples, labels
train, vali, test = samples['train'], samples['vali'], samples['test']
train_labels, vali_labels, test_labels = labels['train'], labels['vali'], labels['test']
assert train_labels.shape[1] == settings['cond_dim']
# normalise to between -1, 1
train, vali, test = normalise_data(train, vali, test)
else:
# generate the data
data_vars = ['num_samples', 'seq_length', 'num_signals', 'freq_low',
'freq_high', 'amplitude_low', 'amplitude_high', 'scale',
'full_mnist']
data_settings = dict((k, settings[k]) for k in data_vars if k in settings.keys())
samples, pdf, labels = get_data(settings['data'], data_settings)
if 'multivariate_mnist' in settings and settings['multivariate_mnist']:
seq_length = samples.shape[1]
samples = samples.reshape(-1, int(np.sqrt(seq_length)), int(np.sqrt(seq_length)))
if 'normalise' in settings and settings['normalise']: # TODO this is a mess, fix
print(settings['normalise'])
norm = True
else:
norm = False
if labels is None:
train, vali, test = split(samples, [0.6, 0.2, 0.2], normalise=norm)
train_labels, vali_labels, test_labels = None, None, None
else:
train, vali, test, labels_list = split(samples, [0.6, 0.2, 0.2], normalise=norm, labels=labels)
train_labels, vali_labels, test_labels = labels_list
labels = dict()
labels['train'], labels['vali'], labels['test'] = train_labels, vali_labels, test_labels
samples = dict()
samples['train'], samples['vali'], samples['test'] = train, vali, test
# futz around with labels
# TODO refactor cause this is messy
if 'one_hot' in settings and settings['one_hot'] and not settings['data_load_from']:
if len(labels['train'].shape) == 1:
# ASSUME labels go from 0 to max_val inclusive, find max-val
max_val = int(np.max([labels['train'].max(), labels['test'].max(), labels['vali'].max()]))
# now we have max_val + 1 dimensions
print('Setting cond_dim to', max_val + 1, 'from', settings['cond_dim'])
settings['cond_dim'] = max_val + 1
print('Setting max_val to 1 from', settings['max_val'])
settings['max_val'] = 1
labels_oh = dict()
for (k, v) in labels.items():
A = np.zeros(shape=(len(v), settings['cond_dim']))
A[np.arange(len(v)), (v).astype(int)] = 1
labels_oh[k] = A
labels = labels_oh
else:
assert settings['max_val'] == 1
# this is already one-hot!
if 'predict_labels' in settings and settings['predict_labels']:
samples, labels = data_utils.make_predict_labels(samples, labels)
print('Setting cond_dim to 0 from', settings['cond_dim'])
settings['cond_dim'] = 0
# update the settings dictionary to update erroneous settings
# (mostly about the sequence length etc. - it gets set by the data!)
settings['seq_length'] = samples['train'].shape[1]
settings['num_samples'] = samples['train'].shape[0] + samples['vali'].shape[0] + samples['test'].shape[0]
settings['num_signals'] = samples['train'].shape[2]
settings['num_generated_features'] = samples['train'].shape[2]
return samples, pdf, labels
def get_data(data_type, data_options=None):
"""
Helper/wrapper function to get the requested data.
"""
labels = None
pdf = None
if data_type == 'load':
data_dict = np.load(data_options).item()
samples = data_dict['samples']
pdf = data_dict['pdf']
labels = data_dict['labels']
elif data_type == 'sine':
samples = sine_wave(**data_options)
elif data_type == 'mnist':
if data_options['full_mnist']:
samples, labels = mnist()
else:
#samples, labels = load_resized_mnist_0_5(14)
samples, labels = load_resized_mnist(14) # this is the 0-2 setting
elif data_type == 'gp_rbf':
print(data_options)
samples, pdf = GP(**data_options, kernel='rbf')
elif data_type == 'linear':
samples, pdf = linear(**data_options)
elif data_type == 'eICU_task':
samples, labels = eICU_task()
elif data_type == 'resampled_eICU':
samples, labels = resampled_eICU(**data_options)
else:
raise ValueError(data_type)
print('Generated/loaded', len(samples), 'samples from data-type', data_type)
return samples, pdf, labels
def get_batch(samples, batch_size, batch_idx, labels=None):
start_pos = batch_idx * batch_size
end_pos = start_pos + batch_size
if labels is None:
return samples[start_pos:end_pos], None
else:
if type(labels) == tuple: # two sets of labels
assert len(labels) == 2
return samples[start_pos:end_pos], labels[0][start_pos:end_pos], labels[1][start_pos:end_pos]
else:
assert type(labels) == np.ndarray
return samples[start_pos:end_pos], labels[start_pos:end_pos]
def normalise_data(train, vali, test, low=-1, high=1):
""" Apply some sort of whitening procedure
"""
# remember, data is num_samples x seq_length x signals
# whiten each signal - mean 0, std 1
mean = np.mean(np.vstack([train, vali]), axis=(0, 1))
std = np.std(np.vstack([train-mean, vali-mean]), axis=(0, 1))
normalised_train = (train - mean)/std
normalised_vali = (vali - mean)/std
normalised_test = (test - mean)/std
# normalised_data = data - np.nanmean(data, axis=(0, 1))
# normalised_data /= np.std(data, axis=(0, 1))
# # normalise samples to be between -1 and +1
# normalise just using train and vali
# min_val = np.nanmin(np.vstack([train, vali]), axis=(0, 1))
# max_val = np.nanmax(np.vstack([train, vali]), axis=(0, 1))
#
# normalised_train = (train - min_val)/(max_val - min_val)
# normalised_train = (high - low)*normalised_train + low
#
# normalised_vali = (vali - min_val)/(max_val - min_val)
# normalised_vali = (high - low)*normalised_vali + low
#
# normalised_test = (test - min_val)/(max_val - min_val)
# normalised_test = (high - low)*normalised_test + low
return normalised_train, normalised_vali, normalised_test
def scale_data(train, vali, test, scale_range=(-1, 1)):
signal_length = train.shape[1]
num_signals = train.shape[2]
# reshape everything
train_r = train.reshape(-1, signal_length*num_signals)
vali_r = vali.reshape(-1, signal_length*num_signals)
test_r = test.reshape(-1, signal_length*num_signals)
# fit scaler using train, vali
scaler = MinMaxScaler(feature_range=scale_range).fit(np.vstack([train_r, vali_r]))
# scale everything
scaled_train = scaler.transform(train_r).reshape(-1, signal_length, num_signals)
scaled_vali = scaler.transform(vali_r).reshape(-1, signal_length, num_signals)
scaled_test = scaler.transform(test_r).reshape(-1, signal_length, num_signals)
return scaled_train, scaled_vali, scaled_test
def split(samples, proportions, normalise=False, scale=False, labels=None, random_seed=None):
"""
Return train/validation/test split.
"""
if random_seed != None:
random.seed(random_seed)
np.random.seed(random_seed)
assert np.sum(proportions) == 1
n_total = samples.shape[0]
n_train = ceil(n_total*proportions[0])
n_test = ceil(n_total*proportions[2])
n_vali = n_total - (n_train + n_test)
# permutation to shuffle the samples
shuff = np.random.permutation(n_total)
train_indices = shuff[:n_train]
vali_indices = shuff[n_train:(n_train + n_vali)]
test_indices = shuff[(n_train + n_vali):]
# TODO when we want to scale we can just return the indices
assert len(set(train_indices).intersection(vali_indices)) == 0
assert len(set(train_indices).intersection(test_indices)) == 0
assert len(set(vali_indices).intersection(test_indices)) == 0
# split up the samples
train = samples[train_indices]
vali = samples[vali_indices]
test = samples[test_indices]
# apply the same normalisation scheme to all parts of the split
if normalise:
if scale: raise ValueError(normalise, scale) # mutually exclusive
train, vali, test = normalise_data(train, vali, test)
elif scale:
train, vali, test = scale_data(train, vali, test)
if labels is None:
return train, vali, test
else:
print('Splitting labels...')
if type(labels) == np.ndarray:
train_labels = labels[train_indices]
vali_labels = labels[vali_indices]
test_labels = labels[test_indices]
labels_split = [train_labels, vali_labels, test_labels]
elif type(labels) == dict:
# more than one set of labels! (weird case)
labels_split = dict()
for (label_name, label_set) in labels.items():
train_labels = label_set[train_indices]
vali_labels = label_set[vali_indices]
test_labels = label_set[test_indices]
labels_split[label_name] = [train_labels, vali_labels, test_labels]
else:
raise ValueError(type(labels))
return train, vali, test, labels_split
def make_predict_labels(samples, labels):
""" Given two dictionaries of samples, labels (already normalised, split etc)
append the labels on as additional signals in the data
"""
print('Appending label to samples')
assert not labels is None
if len(labels['train'].shape) > 1:
num_labels = labels['train'].shape[1]
else:
num_labels = 1
seq_length = samples['train'].shape[1]
num_signals = samples['train'].shape[2]
new_samples = dict()
new_labels = dict()
for (k, X) in samples.items():
num_samples = X.shape[0]
lab = labels[k]
# slow code because i am sick and don't want to try to be smart
new_X = np.zeros(shape=(num_samples, seq_length, num_signals + num_labels))
for row in range(num_samples):
new_X[row, :, :] = np.hstack([X[row, :, :], np.array(seq_length*[(2*lab[row]-1).reshape(num_labels)])])
new_samples[k] = new_X
new_labels[k] = None
return new_samples, new_labels
# --- specific data-types --- #
def eICU_task(predict_label=False):
"""
Load the eICU data for the extreme-value prediction task
"""
path = 'REDACTED'
data = np.load(path).item()
# convert it into similar format
labels = {'train': data['Y_train'], 'vali': data['Y_vali'], 'test': data['Y_test']}
samples = {'train': data['X_train'], 'vali': data['X_vali'], 'test': data['X_test']}
# reshape
for (k, X) in samples.items():
samples[k] = X.reshape(-1, 16, 4)
return samples, labels
def mnist(randomize=False):
""" Load and serialise """
try:
train = np.load('./data/mnist_train.npy')
print('Loaded mnist from .npy')
except IOError:
print('Failed to load MNIST data from .npy, loading from csv')
# read from the csv
train = np.loadtxt(open('./data/mnist_train.csv', 'r'), delimiter=',')
# scale samples from 0 to 1
train[:, 1:] /= 255
# scale from -1 to 1
train[:, 1:] = 2*train[:, 1:] - 1
# save to the npy
np.save('./data/mnist_train.npy', train)
# the first column is labels, kill them
labels = train[:, 0]
samples = train[:, 1:]
if randomize:
# not needed for GAN experiments...
print('Applying fixed permutation to mnist digits.')
fixed_permutation = np.random.permutation(28*28)
samples = train[:, fixed_permutation]
samples = samples.reshape(-1, 28*28, 1) # add redundant additional signals
return samples, labels
def load_resized_mnist_0_5(new_size, randomize=False):
""" Load resised mnist digits from 0 to 5 """
samples, labels = mnist()
print('Resizing...')
samples = samples[np.in1d(labels,[0,1,2,3,4,5])]
labels = labels[np.in1d(labels,[0,1,2,3,4,5])]
if new_size != 28:
resized_imgs = [imresize(img.reshape([28,28]), [new_size,new_size], interp='lanczos').ravel()[np.newaxis].T
for img in samples]
resized_imgs = np.array(resized_imgs)
resized_imgs = resized_imgs.astype(float)
resized_imgs /= 255.0
resized_imgs = 2*resized_imgs - 1
np.save('./data/resized_mnist_1_5_samples.npy', resized_imgs)
np.save('./data/resized_mnist_1_5_labels.npy', labels)
return resized_imgs, labels
else:
return samples, labels
def load_resized_mnist(new_size, from_to_digits=(0,2), randomize=False):
""" Load resised mnist digits from 0 to 5 """
samples, labels = mnist()
print('Resizing...')
samples = samples[np.in1d(labels,np.arange(from_to_digits[0], from_to_digits[1]+1))]
labels = labels[np.in1d(labels,np.arange(from_to_digits[0], from_to_digits[1]+1))]
if new_size != 28:
resized_imgs = [imresize(img.reshape([28,28]), [new_size,new_size], interp='lanczos').ravel()[np.newaxis].T
for img in samples]
resized_imgs = np.array(resized_imgs)
resized_imgs = resized_imgs.astype(float)
resized_imgs /= 255.0
resized_imgs = 2*resized_imgs - 1
np.save('./data/resized_mnist_'+ str(from_to_digits[0]) + '_' + str(from_to_digits[1]) + '_5_samples.npy', resized_imgs)
np.save('./data/resized_mnist_'+ str(from_to_digits[0]) + '_' + str(from_to_digits[1]) + '_labels.npy', labels)
return resized_imgs, labels
else:
return samples, labels
def resampled_eICU(seq_length=16, resample_rate_in_min=15,
variables=['sao2', 'heartrate', 'respiration', 'systemicmean'], **kwargs):
"""
Note: resampling rate is 15 minutes
"""
print('Getting resampled eICU data')
try:
data = np.load(paths.eICU_proc_dir + 'eICU_' + str(resample_rate_in_min) + '.npy').item()
samples = data['samples']
pids = data['pids']
print('Loaded from file!')
return samples, pids
except FileNotFoundError:
# in this case, we go into the main logic of the function
pass
resampled_data_path = paths.eICU_proc_dir + 'complete_resampled_pats_' + str(resample_rate_in_min) + 'min.csv'
resampled_pids_path = paths.eICU_proc_dir + 'cohort_complete_resampled_pats_' + str(resample_rate_in_min) + 'min.csv'
if not os.path.isfile(resampled_data_path):
generate_eICU_resampled_patients(resample_factor_in_min=resample_rate_in_min, upto_in_minutes=None)
get_cohort_of_complete_downsampled_patients(time_in_hours=1.5*resample_rate_in_min*seq_length, resample_factor_in_min=resample_rate_in_min)
pids = set(np.loadtxt(resampled_pids_path, dtype=int))
df = pd.read_csv(resampled_data_path)
# restrict to variables
df_restricted = df.loc[:, variables + ['offset', 'pid']]
# restrict to patients in the "good list"
df_restricted = df_restricted.where(df_restricted.pid.isin(pids)).dropna()
# assert no negative offsets
assert np.all(df_restricted.offset >= 0)
# restrict to 1.5 time the region length
# df_restricted = df_restricted.loc[np.all([df_restricted.offset <= 1.5*resample_rate_in_min*seq_length, df_restricted.offset >= 0], axis=0), :]
df_restricted = df_restricted.loc[df_restricted.offset <= 1.5*resample_rate_in_min*seq_length, :]
# for each patient, return the first seq_length observations
patient_starts = df_restricted.groupby('pid').head(seq_length)
n_pats_prefilter = len(set(patient_starts.pid))
# filter out patients who have fewer than seq_length observations
patient_starts = patient_starts.groupby('pid').filter(lambda x: x.pid.count() == seq_length)
n_pats_postfilter = len(set(patient_starts.pid))
print('Removed', n_pats_prefilter - n_pats_postfilter, 'patients with <', seq_length, 'observations in the first', 1.5*resample_rate_in_min*seq_length, 'minutes, leaving', n_pats_postfilter, 'patients remaining.')
# convert to samples - shape is [n_pats, seq_length, num_signals]
n_patients = n_pats_postfilter
num_signals = len(variables)
samples = np.empty(shape=(n_patients, seq_length, num_signals))
pats_grouped = patient_starts.groupby('pid')
pids = []
for (i, patient) in enumerate(pats_grouped.groups):
samples[i, :, :] = pats_grouped.get_group(patient).loc[:, variables].values
pids.append(patient)
assert i == n_patients - 1
assert np.mean(np.isnan(samples) == 0)
np.save(paths.eICU_proc_dir + 'eICU_' + str(resample_rate_in_min) + '.npy', {'samples': samples, 'pids': pids})
print('Saved to file!')
return samples, pids
def sine_wave(seq_length=30, num_samples=28*5*100, num_signals=1,
freq_low=1, freq_high=5, amplitude_low = 0.1, amplitude_high=0.9, **kwargs):
ix = np.arange(seq_length) + 1
samples = []
for i in range(num_samples):
signals = []
for i in range(num_signals):
f = np.random.uniform(low=freq_high, high=freq_low) # frequency
A = np.random.uniform(low=amplitude_high, high=amplitude_low) # amplitude
# offset
offset = np.random.uniform(low=-np.pi, high=np.pi)
signals.append(A*np.sin(2*np.pi*f*ix/float(seq_length) + offset))
samples.append(np.array(signals).T)
# the shape of the samples is num_samples x seq_length x num_signals
samples = np.array(samples)
return samples
def periodic_kernel(T, f=1.45/30, gamma=7.0, A=0.1):
"""
Calculates periodic kernel between all pairs of time points (there
should be seq_length of those), returns the Gram matrix.
f is frequency - higher means more peaks
gamma is a scale, smaller makes the covariance peaks shallower (smoother)
Heuristic for non-singular rbf:
periodic_kernel(np.arange(len), f=1.0/(0.79*len), A=1.0, gamma=len/4.0)
"""
dists = squareform(pdist(T.reshape(-1, 1)))
cov = A*np.exp(-gamma*(np.sin(2*np.pi*dists*f)**2))
return cov
def GP(seq_length=30, num_samples=28*5*100, num_signals=1, scale=0.1, kernel='rbf', **kwargs):
# the shape of the samples is num_samples x seq_length x num_signals
samples = np.empty(shape=(num_samples, seq_length, num_signals))
#T = np.arange(seq_length)/seq_length # note, between 0 and 1
T = np.arange(seq_length) # note, not between 0 and 1
if kernel == 'periodic':
cov = periodic_kernel(T)
elif kernel =='rbf':
cov = rbf_kernel(T.reshape(-1, 1), gamma=scale)
else:
raise NotImplementedError
# scale the covariance
cov *= 0.2
# define the distribution
mu = np.zeros(seq_length)
print(np.linalg.det(cov))
distribution = multivariate_normal(mean=np.zeros(cov.shape[0]), cov=cov)
pdf = distribution.logpdf
# now generate samples
for i in range(num_signals):
samples[:, :, i] = distribution.rvs(size=num_samples)
return samples, pdf
def linear_marginal_likelihood(Y, X, a0, b0, mu0, lambda0, log=True, **kwargs):
"""
Marginal likelihood for linear model.
See https://en.wikipedia.org/wiki/Bayesian_linear_regression pretty much
"""
seq_length = Y.shape[1] # note, y is just a line (one channel) TODO
n = seq_length
an = a0 + 0.5*n
XtX = np.dot(X.T, X)
lambdan = XtX + lambda0
prefactor = (2*np.pi)**(-0.5*n)
dets = np.sqrt(np.linalg.det(lambda0)/np.linalg.det(lambdan))
marginals = np.empty(Y.shape[0])
for (i, y) in enumerate(Y):
y_reshaped = y.reshape(seq_length)
betahat = np.dot(np.linalg.inv(XtX), np.dot(X.T, y_reshaped))
mun = np.dot(np.linalg.inv(lambdan), np.dot(XtX, betahat) + np.dot(lambda0, mu0))
bn = b0 + 0.5*(np.dot(y_reshaped.T, y_reshaped) + np.dot(np.dot(mu0.T, lambda0), mu0) - np.dot(np.dot(mun.T, lambdan), mun))
bs = (b0**a0)/(bn**an)
gammas = gamma(an)/gamma(a0)
marginals[i] = prefactor*dets*bs*gammas
if log:
marginals = np.log(marginals)
return marginals
def linear(seq_length=30, num_samples=28*5*100, a0=10, b0=0.01, k=2, **kwargs):
"""
Generate data from linear trend from probabilistic model.
The invgamma function in scipy corresponds to wiki defn. of inverse gamma:
scipy a = wiki alpha = a0
scipy scale = wiki beta = b0
k is the number of regression coefficients (just 2 here, slope and intercept)
"""
T = np.zeros(shape=(seq_length, 2))
T[:, 0] = np.arange(seq_length)
T[:, 1] = 1 # equivalent to X
lambda0 = 0.01*np.eye(k) # diagonal covariance for beta
y = np.zeros(shape=(num_samples, seq_length, 1))
sigmasq = invgamma.rvs(a=a0, scale=b0, size=num_samples)
increasing = np.random.choice([-1, 1], num_samples) # flip slope
for n in range(num_samples):
sigmasq_n = sigmasq[n]
offset = np.random.uniform(low=-0.5, high=0.5) # todo limits
mu0 = np.array([increasing[n]*(1.0-offset)/seq_length, offset])
beta = multivariate_normal.rvs(mean=mu0, cov=sigmasq_n*lambda0)
epsilon = np.random.normal(loc=0, scale=np.sqrt(sigmasq_n), size=seq_length)
y[n, :, :] = (np.dot(T, beta) + epsilon).reshape(seq_length, 1)
marginal = partial(linear_marginal_likelihood, X=T, a0=a0, b0=b0, mu0=mu0, lambda0=lambda0)
samples = y
pdf = marginal
return samples, pdf
def changepoint_pdf(Y, cov_ms, cov_Ms):
"""
"""
seq_length = Y.shape[0]
logpdf = []
for (i, m) in enumerate(range(int(seq_length/2), seq_length-1)):
Y_m = Y[:m, 0]
Y_M = Y[m:, 0]
M = seq_length - m
# generate mean function for second part
Ymin = np.min(Y_m)
initial_val = Y_m[-1]
if Ymin > 1:
final_val = (1.0 - M/seq_length)*Ymin
else:
final_val = (1.0 + M/seq_length)*Ymin
mu_M = np.linspace(initial_val, final_val, M)
# ah yeah
logpY_m = multivariate_normal.logpdf(Y_m, mean=np.zeros(m), cov=cov_ms[i])
logpY_M = multivariate_normal.logpdf(Y_M, mean=mu_M, cov=cov_Ms[i])
logpdf_m = logpY_m + logpY_M
logpdf.append(logpdf_m)
return logpdf
def changepoint_cristobal(seq_length=30, num_samples=28*5*100):
"""
Porting Cristobal's code for generating data with a changepoint.
"""
raise NotImplementedError
basal_values_signal_a = np.random.randn(n_samples) * 0.33
trends_seed_a = np.random.randn(n_samples) * 0.005
trends = np.array([i*trends_seed_a for i in range(51)[1:]]).T
signal_a = (basal_values_signal_a + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_a = time_noise + signal_a
basal_values_signal_b = np.random.randn(n_samples) * 0.33
trends_seed_b = np.random.randn(n_samples) * 0.005
trends = np.array([i*trends_seed_b for i in range(51)[1:]]).T
signal_b = (basal_values_signal_b + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_b = time_noise + signal_b
signal_a = np.clip(signal_a, -1, 1)
signal_b = np.clip(signal_b, -1, 1)
# the change in the trend is based on the top extreme values of each
# signal in the first half
time_steps_until_change = np.max(np.abs(signal_a), axis=1) + np.max(np.abs(signal_b), axis=1)*100
# noise added to the starting point
time_steps_until_change += np.random.randn(n_samples) * 5
time_steps_until_change = np.round(time_steps_until_change)
time_steps_until_change = np.clip(time_steps_until_change, 0, n_steps-1)
time_steps_until_change = n_steps - 1 - time_steps_until_change
trends = np.array([i*trends_seed_a for i in range(101)[51:]]).T
signal_a_target = (basal_values_signal_a + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_a_target = time_noise + signal_a_target
trends = np.array([i*trends_seed_b for i in range(101)[51:]]).T
signal_b_target = (basal_values_signal_b + trends.T).T
time_noise = np.random.randn(n_samples, n_steps) * 0.01
signal_b_target = time_noise + signal_b_target
signal_multipliers = []
for ts in time_steps_until_change:
signal_multiplier = []
if ts > 0:
for i in range(int(ts)):
signal_multiplier.append(1)
i += 1
else:
i = 0
multiplier = 1.25
while(i<n_steps):
signal_multiplier.append(multiplier)
multiplier += 0.25
i+=1
signal_multipliers.append(signal_multiplier)
signal_multipliers = np.array(signal_multipliers)
for s_idx, signal_choice in enumerate(basal_values_signal_b > basal_values_signal_a):
if signal_choice == False:
signal_a_target[s_idx] *= signal_multipliers[s_idx]
else:
signal_b_target[s_idx] *= signal_multipliers[s_idx]
signal_a_target = np.clip(signal_a_target, -1, 1)
signal_b_target = np.clip(signal_b_target, -1, 1)
# merging signals
signal_a = np.swapaxes(signal_a[np.newaxis].T, 0, 1)
signal_b = np.swapaxes(signal_b[np.newaxis].T, 0, 1)
signal_a_target = np.swapaxes(signal_a_target[np.newaxis].T, 0, 1)
signal_b_target = np.swapaxes(signal_b_target[np.newaxis].T, 0, 1)
input_seqs = np.dstack((signal_a,signal_b))
target_seqs = np.dstack((signal_a_target,signal_b_target))
return False
def changepoint(seq_length=30, num_samples=28*5*100):
"""
Generate data from two GPs, roughly speaking.
The first part (up to m) is as a normal GP.
The second part (m to end) has a linear downwards trend conditioned on the
first part.
"""
print('Generating samples from changepoint...')
T = np.arange(seq_length)
# sample breakpoint from latter half of sequence
m_s = np.random.choice(np.arange(int(seq_length/2), seq_length-1), size=num_samples)
samples = np.zeros(shape=(num_samples, seq_length, 1))
# kernel parameters and stuff
gamma=5.0/seq_length
A = 0.01
sigmasq = 0.8*A
lamb = 0.0 # if non-zero, cov_M risks not being positive semidefinite...
kernel = partial(rbf_kernel, gamma=gamma)
# multiple values per m
N_ms = []
cov_ms = []
cov_Ms = []
pdfs = []
for m in range(int(seq_length/2), seq_length-1):
# first part
M = seq_length - m
T_m = T[:m].reshape(m, 1)
cov_m = A*kernel(T_m.reshape(-1, 1), T_m.reshape(-1, 1))
cov_ms.append(cov_m)
# the second part
T_M = T[m:].reshape(M, 1)
cov_mM = kernel(T_M.reshape(-1, 1), T_m.reshape(-1, 1))
cov_M = sigmasq*(np.eye(M) - lamb*np.dot(np.dot(cov_mM, np.linalg.inv(cov_m)), cov_mM.T))
cov_Ms.append(cov_M)
for n in range(num_samples):
m = m_s[n]
M = seq_length-m
# sample the first m
cov_m = cov_ms[m - int(seq_length/2)]
Xm = multivariate_normal.rvs(cov=cov_m)
# generate mean function for second
Xmin = np.min(Xm)
initial_val = Xm[-1]
if Xmin > 1:
final_val = (1.0 - M/seq_length)*Xmin
else:
final_val = (1.0 + M/seq_length)*Xmin
mu_M = np.linspace(initial_val, final_val, M)
# sample the rest
cov_M = cov_Ms[m -int(seq_length/2)]
XM = multivariate_normal.rvs(mean=mu_M, cov=cov_M)
# combine the sequence
# NOTE: just one dimension
samples[n, :, 0] = np.concatenate([Xm, XM])
pdf = partial(changepoint_pdf, cov_ms=cov_ms, cov_Ms=cov_Ms)
return samples, pdf, m_s
def resample_eICU_patient(pid, resample_factor_in_min, variables, upto_in_minutes):
"""
Resample a *single* patient.
"""
pat_df = pd.read_hdf(paths.eICU_hdf_dir + '/vitalPeriodic.h5',
where='patientunitstayid = ' + str(pid),
columns=['observationoffset', 'patientunitstayid'] + variables,
mode='r')
# sometimes it's empty
if pat_df.empty:
return None
if not upto_in_minutes is None:
pat_df = pat_df.loc[0:upto_in_minutes*60]
# convert the offset to a TimedeltaIndex (necessary for resampling)
pat_df.observationoffset = pd.TimedeltaIndex(pat_df.observationoffset, unit='m')
pat_df.set_index('observationoffset', inplace=True)
pat_df.sort_index(inplace=True)
# resample by time
pat_df_resampled = pat_df.resample(str(resample_factor_in_min) + 'T').median() # pandas ignores NA in median by default
# rename pid, cast to int
pat_df_resampled.rename(columns={'patientunitstayid': 'pid'}, inplace=True)
pat_df_resampled['pid'] = np.int32(pat_df_resampled['pid'])
# get offsets in minutes from index
pat_df_resampled['offset'] = np.int32(pat_df_resampled.index.total_seconds()/60)
return pat_df_resampled
def generate_eICU_resampled_patients(resample_factor_in_min=15,
upto_in_minutes=None):
"""
Generates a dataframe with resampled patients. One sample every "resample_factor_in_min" minutes.
"""
pids = set(np.loadtxt(paths.eICU_proc_dir + 'pids.txt', dtype=int))
exclude_pids = set(np.loadtxt(paths.eICU_proc_dir + 'pids_missing_vitals.txt', dtype=int))
print('Excluding', len(exclude_pids), 'patients for not having vitals information')
pids = pids.difference(exclude_pids)
variables = ['sao2', 'heartrate', 'respiration', 'systemicmean']
num_pat = 0
num_miss = 0
f_miss = open(paths.eICU_proc_dir + 'pids_missing_vitals.txt', 'a')
for pid in pids: # have to go patient by patient
pat_df_resampled = resample_eICU_patient(pid, resample_factor_in_min, variables, upto_in_minutes)
if pat_df_resampled is None:
f_miss.write(str(pid) + '\n')
num_miss += 1
continue
else:
if num_pat == 0:
f = open(paths.eICU_proc_dir + 'resampled_pats' + str(resample_factor_in_min) +'min.csv', 'w')
pat_df_resampled.to_csv(f, header=True, index=False)
else:
pat_df_resampled.to_csv(f, header=False, index=False)
num_pat += 1
if num_pat % 100 == 0:
print(num_pat)
f.flush()
f_miss.flush()
print('Acquired data on', num_pat, 'patients.')
print('Skipped', num_miss, 'patients.')
return True
def get_cohort_of_complete_downsampled_patients(time_in_hours=4, resample_factor_in_min=15):
"""
Finds the set of patients that have no missing data during the first "time_in_hours".
"""
resampled_pats = pd.read_csv(paths.eICU_proc_dir + 'resampled_pats' + str(resample_factor_in_min) + 'min.csv')
time_in_minutes = time_in_hours * 60
# delete patients with any negative offset
print('Deleting patients with negative offsets...')
df_posoffset = resampled_pats.groupby('pid').filter(lambda x: np.all(x.offset >= 0))
# restrict time consideration
print('Restricting to offsets below', time_in_minutes)
df = df_posoffset.loc[df_posoffset.offset <= time_in_minutes]
#variables = ['sao2', 'heartrate', 'respiration', 'systemicmean']
variables = ['sao2', 'heartrate', 'respiration']
# patients with no missing values in those variables (this is slow)
print('Finding patients with no missing values in', ','.join(variables))
good_patients = df.groupby('pid').filter(lambda x: np.all(x.loc[:, variables].isnull().sum() == 0))
# extract the pids, save the cohort
cohort = good_patients.pid.drop_duplicates()
if cohort.shape[0] < 2:
print('ERROR: not enough patients in cohort.', cohort.shape[0])
return False
else:
print('Saving...')
cohort.to_csv(paths.eICU_proc_dir + 'cohort_complete_resampled_pats_' + str(resample_factor_in_min) + 'min.csv', header=False, index=False)
# save the full data (not just cohort)
good_patients.to_csv(paths.eICU_proc_dir + 'complete_resampled_pats_' + str(resample_factor_in_min) + 'min.csv', index=False)
return True
def get_eICU_with_targets(use_age=False, use_gender=False, save=False):
"""
Load resampled eICU data and get static prediction targets from demographics
(patients) file
"""
if use_age: print('Using age!')
if use_gender: print('Using gender!')
if save: print('Save!')
# load resampled eICU data (the labels are the patientunitstayids)
samples, pdf, labels = get_data('resampled_eICU', {})
# load patients static information
eICU_dir = 'REDACTED'
pat_dfs = pd.read_hdf(eICU_dir + '/patient.h5', mode='r')
# keep only static information of patients that are in the resampled table
pat_dfs = pat_dfs[pat_dfs.patientunitstayid.isin(labels)]
# reordering df to have the same order as samples and labels
pat_dfs.set_index('patientunitstayid', inplace=True)
pat_dfs.reindex(labels)
# target variables to keep. For now we don't use hospitaldischargeoffset since it is the only integer variable.
#target_vars = ['hospitaldischargeoffset', 'hospitaldischargestatus', 'apacheadmissiondx', 'hospitaldischargelocation', 'unittype', 'unitadmitsource']
real_vars = ['age']
binary_vars = ['hospitaldischargestatus', 'gender']
categorical_vars = ['apacheadmissiondx', 'hospitaldischargelocation', 'unittype', 'unitadmitsource']
target_vars = categorical_vars + ['hospitaldischargestatus']
if use_age: target_vars += ['age']
if use_gender: target_vars += ['gender']
targets_df = pat_dfs.loc[:, target_vars]
# remove patients by criteria
# missing data in any target
targets_df.dropna(how='any', inplace=True)
if use_age:
# age belonw 18 or above 89
targets_df = targets_df[targets_df.age != '> 89'] # yes, some ages are strings
targets_df.age = list(map(int, targets_df.age))
targets_df = targets_df[targets_df.age >= 18]
if use_gender:
# remove non-binary genders (sorry!)
targets_df['gender'] = targets_df['gender'].replace(['Female', 'Male', 'Other', 'Unknown'], [0, 1, -1, -1])
targets_df = targets_df[targets_df.gender >= 0]
# record patients to keep
keep_indices = [i for (i, pid) in enumerate(labels) if pid in targets_df.index]
assert len(keep_indices) == targets_df.shape[0]
new_samples = samples[keep_indices]
new_labels = np.array(labels)[keep_indices]
# triple check the labels are correct
assert np.array_equal(targets_df.index, new_labels)
# getn non-one-hot targets (strings)
targets = targets_df.values
# one hot encoding of categorical variables
dummies = pd.get_dummies(targets_df[categorical_vars], dummy_na=True)
targets_df_oh = pd.DataFrame()
targets_df_oh[dummies.columns] = dummies
# convert binary variables to one-hot, too
targets_df_oh['hospitaldischargestatus']= targets_df['hospitaldischargestatus'].replace(['Alive', 'Expired'],[1, 0])
if use_gender:
targets_df_oh['gender'] = targets_df['gender'] # already binarised
if use_age:
targets_df_oh['age'] = 2*targets_df['age']/89 - 1 # 89 is max
# drop dummy columns marking missing data (they should be empty)
nancols = [col for col in targets_df_oh.columns if col.endswith('nan')]
assert np.all(targets_df_oh[nancols].sum() == 0)
targets_df_oh.drop(nancols, axis=1, inplace=True)
targets_oh = targets_df_oh.values
if save:
# save!
# merge with training data, for LR saving
assert new_samples.shape[0] == targets_df_oh.shape[0]
flat_samples = new_samples.reshape(new_samples.shape[0], -1)
features_df = pd.DataFrame(flat_samples)
features_df.index = targets_df_oh.index
features_df.columns = ['feature_' + str(i) for i in range(features_df.shape[1])]
all_data = pd.concat([targets_df_oh, features_df], axis=1)
all_data.to_csv('./data/eICU_with_targets.csv')
# do the split
proportions = [0.6, 0.2, 0.2]
labels = {'targets': targets, 'targets_oh': targets_oh}
train_seqs, vali_seqs, test_seqs, labels_split = split(new_samples, proportions, scale=True, labels=labels)
train_targets, vali_targets, test_targets = labels_split['targets']
train_targets_oh, vali_targets_oh, test_targets_oh = labels_split['targets_oh']
return train_seqs, vali_seqs, test_seqs, train_targets, vali_targets, test_targets, train_targets_oh, vali_targets_oh, test_targets_oh
### --- TSTR ---- ####
def generate_synthetic(identifier, epoch, n_train, predict_labels=False):
"""
- Load a CGAN pretrained model
- Load its corresponding test data (+ labels)
- Generate num_examples synthetic training data (+labels)
- Save to format easy for training classifier on (see Eval)
"""
settings = json.load(open('./experiments/settings/' + identifier + '.txt', 'r'))
if not settings['cond_dim'] > 0:
assert settings['predict_labels']
assert predict_labels
# get the test data
print('Loading test (real) data for', identifier)
data_dict = np.load('./experiments/data/' + identifier + '.data.npy').item()
test_data = data_dict['samples']['test']
test_labels = data_dict['labels']['test']
train_data = data_dict['samples']['train']
train_labels = data_dict['labels']['train']
print('Loaded', test_data.shape[0], 'test examples')
print('Sampling', n_train, 'train examples from the model')
if not predict_labels:
assert test_data.shape[0] == test_labels.shape[0]
if 'eICU' in settings['data']:
synth_labels = train_labels[np.random.choice(train_labels.shape[0], n_train), :]
else:
# this doesn't really work for eICU...
synth_labels = model.sample_C(n_train, settings['cond_dim'], settings['max_val'], settings['one_hot'])
synth_data = model.sample_trained_model(settings, epoch, n_train, Z_samples=None, cond_dim=settings['cond_dim'], C_samples=synth_labels)
else:
assert settings['predict_labels']
synth_data = model.sample_trained_model(settings, epoch, n_train, Z_samples=None, cond_dim=0)
# extract the labels
if 'eICU' in settings['data']:
n_labels = 7
synth_labels = synth_data[:, :, -n_labels:]
train_labels = train_data[:, :, -n_labels:]
test_labels = test_data[:, :, -n_labels:]
else:
n_labels = 6 # mnist
synth_labels, _ = mode(np.argmax(synth_data[:, :, -n_labels:], axis=2), axis=1)
train_labels, _ = mode(np.argmax(train_data[:, :, -n_labels:], axis=2), axis=1)
test_labels, _ = mode(np.argmax(test_data[:, :, -n_labels:], axis=2), axis=1)
synth_data = synth_data[:, :, :-n_labels]
train_data = train_data[:, :, :-n_labels]
test_data = test_data[:, :, :-n_labels]
# package up, save
exp_data = dict()
exp_data['test_data'] = test_data
exp_data['test_labels'] = test_labels
exp_data['train_data'] = train_data
exp_data['train_labels'] = train_labels
exp_data['synth_data'] = synth_data
exp_data['synth_labels'] = synth_labels
# save it all up
np.save('./experiments/tstr/' + identifier + '_' + str(epoch) + '.data.npy', exp_data)
return True
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。