1 Star 0 Fork 0

zhuchance / kubernetes

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
encode.go 23.56 KB
一键复制 编辑 原始数据 按行查看 历史
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001
// Copyright (c) 2012, 2013 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a BSD-style license found in the LICENSE file.
package codec
import (
"io"
"reflect"
)
const (
// Some tagging information for error messages.
msgTagEnc = "codec.encoder"
defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
// maxTimeSecs32 = math.MaxInt32 / 60 / 24 / 366
)
// AsSymbolFlag defines what should be encoded as symbols.
type AsSymbolFlag uint8
const (
// AsSymbolDefault is default.
// Currently, this means only encode struct field names as symbols.
// The default is subject to change.
AsSymbolDefault AsSymbolFlag = iota
// AsSymbolAll means encode anything which could be a symbol as a symbol.
AsSymbolAll = 0xfe
// AsSymbolNone means do not encode anything as a symbol.
AsSymbolNone = 1 << iota
// AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
AsSymbolMapStringKeysFlag
// AsSymbolStructFieldName means encode struct field names as symbols.
AsSymbolStructFieldNameFlag
)
// encWriter abstracting writing to a byte array or to an io.Writer.
type encWriter interface {
writeUint16(uint16)
writeUint32(uint32)
writeUint64(uint64)
writeb([]byte)
writestr(string)
writen1(byte)
writen2(byte, byte)
atEndOfEncode()
}
// encDriver abstracts the actual codec (binc vs msgpack, etc)
type encDriver interface {
isBuiltinType(rt uintptr) bool
encodeBuiltin(rt uintptr, v interface{})
encodeNil()
encodeInt(i int64)
encodeUint(i uint64)
encodeBool(b bool)
encodeFloat32(f float32)
encodeFloat64(f float64)
encodeExtPreamble(xtag byte, length int)
encodeArrayPreamble(length int)
encodeMapPreamble(length int)
encodeString(c charEncoding, v string)
encodeSymbol(v string)
encodeStringBytes(c charEncoding, v []byte)
//TODO
//encBignum(f *big.Int)
//encStringRunes(c charEncoding, v []rune)
}
type ioEncWriterWriter interface {
WriteByte(c byte) error
WriteString(s string) (n int, err error)
Write(p []byte) (n int, err error)
}
type ioEncStringWriter interface {
WriteString(s string) (n int, err error)
}
type EncodeOptions struct {
// Encode a struct as an array, and not as a map.
StructToArray bool
// AsSymbols defines what should be encoded as symbols.
//
// Encoding as symbols can reduce the encoded size significantly.
//
// However, during decoding, each string to be encoded as a symbol must
// be checked to see if it has been seen before. Consequently, encoding time
// will increase if using symbols, because string comparisons has a clear cost.
//
// Sample values:
// AsSymbolNone
// AsSymbolAll
// AsSymbolMapStringKeys
// AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
AsSymbols AsSymbolFlag
}
// ---------------------------------------------
type simpleIoEncWriterWriter struct {
w io.Writer
bw io.ByteWriter
sw ioEncStringWriter
}
func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
if o.bw != nil {
return o.bw.WriteByte(c)
}
_, err = o.w.Write([]byte{c})
return
}
func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
if o.sw != nil {
return o.sw.WriteString(s)
}
return o.w.Write([]byte(s))
}
func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
return o.w.Write(p)
}
// ----------------------------------------
// ioEncWriter implements encWriter and can write to an io.Writer implementation
type ioEncWriter struct {
w ioEncWriterWriter
x [8]byte // temp byte array re-used internally for efficiency
}
func (z *ioEncWriter) writeUint16(v uint16) {
bigen.PutUint16(z.x[:2], v)
z.writeb(z.x[:2])
}
func (z *ioEncWriter) writeUint32(v uint32) {
bigen.PutUint32(z.x[:4], v)
z.writeb(z.x[:4])
}
func (z *ioEncWriter) writeUint64(v uint64) {
bigen.PutUint64(z.x[:8], v)
z.writeb(z.x[:8])
}
func (z *ioEncWriter) writeb(bs []byte) {
if len(bs) == 0 {
return
}
n, err := z.w.Write(bs)
if err != nil {
panic(err)
}
if n != len(bs) {
encErr("write: Incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n)
}
}
func (z *ioEncWriter) writestr(s string) {
n, err := z.w.WriteString(s)
if err != nil {
panic(err)
}
if n != len(s) {
encErr("write: Incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n)
}
}
func (z *ioEncWriter) writen1(b byte) {
if err := z.w.WriteByte(b); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
z.writen1(b1)
z.writen1(b2)
}
func (z *ioEncWriter) atEndOfEncode() {}
// ----------------------------------------
// bytesEncWriter implements encWriter and can write to an byte slice.
// It is used by Marshal function.
type bytesEncWriter struct {
b []byte
c int // cursor
out *[]byte // write out on atEndOfEncode
}
func (z *bytesEncWriter) writeUint16(v uint16) {
c := z.grow(2)
z.b[c] = byte(v >> 8)
z.b[c+1] = byte(v)
}
func (z *bytesEncWriter) writeUint32(v uint32) {
c := z.grow(4)
z.b[c] = byte(v >> 24)
z.b[c+1] = byte(v >> 16)
z.b[c+2] = byte(v >> 8)
z.b[c+3] = byte(v)
}
func (z *bytesEncWriter) writeUint64(v uint64) {
c := z.grow(8)
z.b[c] = byte(v >> 56)
z.b[c+1] = byte(v >> 48)
z.b[c+2] = byte(v >> 40)
z.b[c+3] = byte(v >> 32)
z.b[c+4] = byte(v >> 24)
z.b[c+5] = byte(v >> 16)
z.b[c+6] = byte(v >> 8)
z.b[c+7] = byte(v)
}
func (z *bytesEncWriter) writeb(s []byte) {
if len(s) == 0 {
return
}
c := z.grow(len(s))
copy(z.b[c:], s)
}
func (z *bytesEncWriter) writestr(s string) {
c := z.grow(len(s))
copy(z.b[c:], s)
}
func (z *bytesEncWriter) writen1(b1 byte) {
c := z.grow(1)
z.b[c] = b1
}
func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
c := z.grow(2)
z.b[c] = b1
z.b[c+1] = b2
}
func (z *bytesEncWriter) atEndOfEncode() {
*(z.out) = z.b[:z.c]
}
func (z *bytesEncWriter) grow(n int) (oldcursor int) {
oldcursor = z.c
z.c = oldcursor + n
if z.c > cap(z.b) {
// Tried using appendslice logic: (if cap < 1024, *2, else *1.25).
// However, it was too expensive, causing too many iterations of copy.
// Using bytes.Buffer model was much better (2*cap + n)
bs := make([]byte, 2*cap(z.b)+n)
copy(bs, z.b[:oldcursor])
z.b = bs
} else if z.c > len(z.b) {
z.b = z.b[:cap(z.b)]
}
return
}
// ---------------------------------------------
type encFnInfo struct {
ti *typeInfo
e *Encoder
ee encDriver
xfFn func(reflect.Value) ([]byte, error)
xfTag byte
}
func (f *encFnInfo) builtin(rv reflect.Value) {
f.ee.encodeBuiltin(f.ti.rtid, rv.Interface())
}
func (f *encFnInfo) rawExt(rv reflect.Value) {
f.e.encRawExt(rv.Interface().(RawExt))
}
func (f *encFnInfo) ext(rv reflect.Value) {
bs, fnerr := f.xfFn(rv)
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
f.ee.encodeNil()
return
}
if f.e.hh.writeExt() {
f.ee.encodeExtPreamble(f.xfTag, len(bs))
f.e.w.writeb(bs)
} else {
f.ee.encodeStringBytes(c_RAW, bs)
}
}
func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
var bm binaryMarshaler
if f.ti.mIndir == 0 {
bm = rv.Interface().(binaryMarshaler)
} else if f.ti.mIndir == -1 {
bm = rv.Addr().Interface().(binaryMarshaler)
} else {
for j, k := int8(0), f.ti.mIndir; j < k; j++ {
if rv.IsNil() {
f.ee.encodeNil()
return
}
rv = rv.Elem()
}
bm = rv.Interface().(binaryMarshaler)
}
// debugf(">>>> binaryMarshaler: %T", rv.Interface())
bs, fnerr := bm.MarshalBinary()
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
f.ee.encodeNil()
} else {
f.ee.encodeStringBytes(c_RAW, bs)
}
}
func (f *encFnInfo) kBool(rv reflect.Value) {
f.ee.encodeBool(rv.Bool())
}
func (f *encFnInfo) kString(rv reflect.Value) {
f.ee.encodeString(c_UTF8, rv.String())
}
func (f *encFnInfo) kFloat64(rv reflect.Value) {
f.ee.encodeFloat64(rv.Float())
}
func (f *encFnInfo) kFloat32(rv reflect.Value) {
f.ee.encodeFloat32(float32(rv.Float()))
}
func (f *encFnInfo) kInt(rv reflect.Value) {
f.ee.encodeInt(rv.Int())
}
func (f *encFnInfo) kUint(rv reflect.Value) {
f.ee.encodeUint(rv.Uint())
}
func (f *encFnInfo) kInvalid(rv reflect.Value) {
f.ee.encodeNil()
}
func (f *encFnInfo) kErr(rv reflect.Value) {
encErr("Unsupported kind: %s, for: %#v", rv.Kind(), rv)
}
func (f *encFnInfo) kSlice(rv reflect.Value) {
if rv.IsNil() {
f.ee.encodeNil()
return
}
if shortCircuitReflectToFastPath {
switch f.ti.rtid {
case intfSliceTypId:
f.e.encSliceIntf(rv.Interface().([]interface{}))
return
case strSliceTypId:
f.e.encSliceStr(rv.Interface().([]string))
return
case uint64SliceTypId:
f.e.encSliceUint64(rv.Interface().([]uint64))
return
case int64SliceTypId:
f.e.encSliceInt64(rv.Interface().([]int64))
return
}
}
// If in this method, then there was no extension function defined.
// So it's okay to treat as []byte.
if f.ti.rtid == uint8SliceTypId || f.ti.rt.Elem().Kind() == reflect.Uint8 {
f.ee.encodeStringBytes(c_RAW, rv.Bytes())
return
}
l := rv.Len()
if f.ti.mbs {
if l%2 == 1 {
encErr("mapBySlice: invalid length (must be divisible by 2): %v", l)
}
f.ee.encodeMapPreamble(l / 2)
} else {
f.ee.encodeArrayPreamble(l)
}
if l == 0 {
return
}
for j := 0; j < l; j++ {
// TODO: Consider perf implication of encoding odd index values as symbols if type is string
f.e.encodeValue(rv.Index(j))
}
}
func (f *encFnInfo) kArray(rv reflect.Value) {
// We cannot share kSlice method, because the array may be non-addressable.
// E.g. type struct S{B [2]byte}; Encode(S{}) will bomb on "panic: slice of unaddressable array".
// So we have to duplicate the functionality here.
// f.e.encodeValue(rv.Slice(0, rv.Len()))
// f.kSlice(rv.Slice(0, rv.Len()))
l := rv.Len()
// Handle an array of bytes specially (in line with what is done for slices)
if f.ti.rt.Elem().Kind() == reflect.Uint8 {
if l == 0 {
f.ee.encodeStringBytes(c_RAW, nil)
return
}
var bs []byte
if rv.CanAddr() {
bs = rv.Slice(0, l).Bytes()
} else {
bs = make([]byte, l)
for i := 0; i < l; i++ {
bs[i] = byte(rv.Index(i).Uint())
}
}
f.ee.encodeStringBytes(c_RAW, bs)
return
}
if f.ti.mbs {
if l%2 == 1 {
encErr("mapBySlice: invalid length (must be divisible by 2): %v", l)
}
f.ee.encodeMapPreamble(l / 2)
} else {
f.ee.encodeArrayPreamble(l)
}
if l == 0 {
return
}
for j := 0; j < l; j++ {
// TODO: Consider perf implication of encoding odd index values as symbols if type is string
f.e.encodeValue(rv.Index(j))
}
}
func (f *encFnInfo) kStruct(rv reflect.Value) {
fti := f.ti
newlen := len(fti.sfi)
rvals := make([]reflect.Value, newlen)
var encnames []string
e := f.e
tisfi := fti.sfip
toMap := !(fti.toArray || e.h.StructToArray)
// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
if toMap {
tisfi = fti.sfi
encnames = make([]string, newlen)
}
newlen = 0
for _, si := range tisfi {
if si.i != -1 {
rvals[newlen] = rv.Field(int(si.i))
} else {
rvals[newlen] = rv.FieldByIndex(si.is)
}
if toMap {
if si.omitEmpty && isEmptyValue(rvals[newlen]) {
continue
}
encnames[newlen] = si.encName
} else {
if si.omitEmpty && isEmptyValue(rvals[newlen]) {
rvals[newlen] = reflect.Value{} //encode as nil
}
}
newlen++
}
// debugf(">>>> kStruct: newlen: %v", newlen)
if toMap {
ee := f.ee //don't dereference everytime
ee.encodeMapPreamble(newlen)
// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
for j := 0; j < newlen; j++ {
if asSymbols {
ee.encodeSymbol(encnames[j])
} else {
ee.encodeString(c_UTF8, encnames[j])
}
e.encodeValue(rvals[j])
}
} else {
f.ee.encodeArrayPreamble(newlen)
for j := 0; j < newlen; j++ {
e.encodeValue(rvals[j])
}
}
}
// func (f *encFnInfo) kPtr(rv reflect.Value) {
// debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
// if rv.IsNil() {
// f.ee.encodeNil()
// return
// }
// f.e.encodeValue(rv.Elem())
// }
func (f *encFnInfo) kInterface(rv reflect.Value) {
if rv.IsNil() {
f.ee.encodeNil()
return
}
f.e.encodeValue(rv.Elem())
}
func (f *encFnInfo) kMap(rv reflect.Value) {
if rv.IsNil() {
f.ee.encodeNil()
return
}
if shortCircuitReflectToFastPath {
switch f.ti.rtid {
case mapIntfIntfTypId:
f.e.encMapIntfIntf(rv.Interface().(map[interface{}]interface{}))
return
case mapStrIntfTypId:
f.e.encMapStrIntf(rv.Interface().(map[string]interface{}))
return
case mapStrStrTypId:
f.e.encMapStrStr(rv.Interface().(map[string]string))
return
case mapInt64IntfTypId:
f.e.encMapInt64Intf(rv.Interface().(map[int64]interface{}))
return
case mapUint64IntfTypId:
f.e.encMapUint64Intf(rv.Interface().(map[uint64]interface{}))
return
}
}
l := rv.Len()
f.ee.encodeMapPreamble(l)
if l == 0 {
return
}
// keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
keyTypeIsString := f.ti.rt.Key() == stringTyp
var asSymbols bool
if keyTypeIsString {
asSymbols = f.e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
}
mks := rv.MapKeys()
// for j, lmks := 0, len(mks); j < lmks; j++ {
for j := range mks {
if keyTypeIsString {
if asSymbols {
f.ee.encodeSymbol(mks[j].String())
} else {
f.ee.encodeString(c_UTF8, mks[j].String())
}
} else {
f.e.encodeValue(mks[j])
}
f.e.encodeValue(rv.MapIndex(mks[j]))
}
}
// --------------------------------------------------
// encFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type encFn struct {
i *encFnInfo
f func(*encFnInfo, reflect.Value)
}
// --------------------------------------------------
// An Encoder writes an object to an output stream in the codec format.
type Encoder struct {
w encWriter
e encDriver
h *BasicHandle
hh Handle
f map[uintptr]encFn
x []uintptr
s []encFn
}
// NewEncoder returns an Encoder for encoding into an io.Writer.
//
// For efficiency, Users are encouraged to pass in a memory buffered writer
// (eg bufio.Writer, bytes.Buffer).
func NewEncoder(w io.Writer, h Handle) *Encoder {
ww, ok := w.(ioEncWriterWriter)
if !ok {
sww := simpleIoEncWriterWriter{w: w}
sww.bw, _ = w.(io.ByteWriter)
sww.sw, _ = w.(ioEncStringWriter)
ww = &sww
//ww = bufio.NewWriterSize(w, defEncByteBufSize)
}
z := ioEncWriter{
w: ww,
}
return &Encoder{w: &z, hh: h, h: h.getBasicHandle(), e: h.newEncDriver(&z)}
}
// NewEncoderBytes returns an encoder for encoding directly and efficiently
// into a byte slice, using zero-copying to temporary slices.
//
// It will potentially replace the output byte slice pointed to.
// After encoding, the out parameter contains the encoded contents.
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
in := *out
if in == nil {
in = make([]byte, defEncByteBufSize)
}
z := bytesEncWriter{
b: in,
out: out,
}
return &Encoder{w: &z, hh: h, h: h.getBasicHandle(), e: h.newEncDriver(&z)}
}
// Encode writes an object into a stream in the codec format.
//
// Encoding can be configured via the "codec" struct tag for the fields.
//
// The "codec" key in struct field's tag value is the key name,
// followed by an optional comma and options.
//
// To set an option on all fields (e.g. omitempty on all fields), you
// can create a field called _struct, and set flags on it.
//
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
// - the field's codec tag is "-", OR
// - the field is empty and its codec tag specifies the "omitempty" option.
//
// When encoding as a map, the first string in the tag (before the comma)
// is the map key string to use when encoding.
//
// However, struct values may encode as arrays. This happens when:
// - StructToArray Encode option is set, OR
// - the codec tag on the _struct field sets the "toarray" option
//
// Values with types that implement MapBySlice are encoded as stream maps.
//
// The empty values (for omitempty option) are false, 0, any nil pointer
// or interface value, and any array, slice, map, or string of length zero.
//
// Anonymous fields are encoded inline if no struct tag is present.
// Else they are encoded as regular fields.
//
// Examples:
//
// type MyStruct struct {
// _struct bool `codec:",omitempty"` //set omitempty for every field
// Field1 string `codec:"-"` //skip this field
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
// ...
// }
//
// type MyStruct struct {
// _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
// //and encode struct as an array
// }
//
// The mode of encoding is based on the type of the value. When a value is seen:
// - If an extension is registered for it, call that extension function
// - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error)
// - Else encode it based on its reflect.Kind
//
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
// Some formats support symbols (e.g. binc) and will properly encode the string
// only once in the stream, and use a tag to refer to it thereafter.
func (e *Encoder) Encode(v interface{}) (err error) {
defer panicToErr(&err)
e.encode(v)
e.w.atEndOfEncode()
return
}
func (e *Encoder) encode(iv interface{}) {
switch v := iv.(type) {
case nil:
e.e.encodeNil()
case reflect.Value:
e.encodeValue(v)
case string:
e.e.encodeString(c_UTF8, v)
case bool:
e.e.encodeBool(v)
case int:
e.e.encodeInt(int64(v))
case int8:
e.e.encodeInt(int64(v))
case int16:
e.e.encodeInt(int64(v))
case int32:
e.e.encodeInt(int64(v))
case int64:
e.e.encodeInt(v)
case uint:
e.e.encodeUint(uint64(v))
case uint8:
e.e.encodeUint(uint64(v))
case uint16:
e.e.encodeUint(uint64(v))
case uint32:
e.e.encodeUint(uint64(v))
case uint64:
e.e.encodeUint(v)
case float32:
e.e.encodeFloat32(v)
case float64:
e.e.encodeFloat64(v)
case []interface{}:
e.encSliceIntf(v)
case []string:
e.encSliceStr(v)
case []int64:
e.encSliceInt64(v)
case []uint64:
e.encSliceUint64(v)
case []uint8:
e.e.encodeStringBytes(c_RAW, v)
case map[interface{}]interface{}:
e.encMapIntfIntf(v)
case map[string]interface{}:
e.encMapStrIntf(v)
case map[string]string:
e.encMapStrStr(v)
case map[int64]interface{}:
e.encMapInt64Intf(v)
case map[uint64]interface{}:
e.encMapUint64Intf(v)
case *string:
e.e.encodeString(c_UTF8, *v)
case *bool:
e.e.encodeBool(*v)
case *int:
e.e.encodeInt(int64(*v))
case *int8:
e.e.encodeInt(int64(*v))
case *int16:
e.e.encodeInt(int64(*v))
case *int32:
e.e.encodeInt(int64(*v))
case *int64:
e.e.encodeInt(*v)
case *uint:
e.e.encodeUint(uint64(*v))
case *uint8:
e.e.encodeUint(uint64(*v))
case *uint16:
e.e.encodeUint(uint64(*v))
case *uint32:
e.e.encodeUint(uint64(*v))
case *uint64:
e.e.encodeUint(*v)
case *float32:
e.e.encodeFloat32(*v)
case *float64:
e.e.encodeFloat64(*v)
case *[]interface{}:
e.encSliceIntf(*v)
case *[]string:
e.encSliceStr(*v)
case *[]int64:
e.encSliceInt64(*v)
case *[]uint64:
e.encSliceUint64(*v)
case *[]uint8:
e.e.encodeStringBytes(c_RAW, *v)
case *map[interface{}]interface{}:
e.encMapIntfIntf(*v)
case *map[string]interface{}:
e.encMapStrIntf(*v)
case *map[string]string:
e.encMapStrStr(*v)
case *map[int64]interface{}:
e.encMapInt64Intf(*v)
case *map[uint64]interface{}:
e.encMapUint64Intf(*v)
default:
e.encodeValue(reflect.ValueOf(iv))
}
}
func (e *Encoder) encodeValue(rv reflect.Value) {
for rv.Kind() == reflect.Ptr {
if rv.IsNil() {
e.e.encodeNil()
return
}
rv = rv.Elem()
}
rt := rv.Type()
rtid := reflect.ValueOf(rt).Pointer()
// if e.f == nil && e.s == nil { debugf("---->Creating new enc f map for type: %v\n", rt) }
var fn encFn
var ok bool
if useMapForCodecCache {
fn, ok = e.f[rtid]
} else {
for i, v := range e.x {
if v == rtid {
fn, ok = e.s[i], true
break
}
}
}
if !ok {
// debugf("\tCreating new enc fn for type: %v\n", rt)
fi := encFnInfo{ti: getTypeInfo(rtid, rt), e: e, ee: e.e}
fn.i = &fi
if rtid == rawExtTypId {
fn.f = (*encFnInfo).rawExt
} else if e.e.isBuiltinType(rtid) {
fn.f = (*encFnInfo).builtin
} else if xfTag, xfFn := e.h.getEncodeExt(rtid); xfFn != nil {
fi.xfTag, fi.xfFn = xfTag, xfFn
fn.f = (*encFnInfo).ext
} else if supportBinaryMarshal && fi.ti.m {
fn.f = (*encFnInfo).binaryMarshal
} else {
switch rk := rt.Kind(); rk {
case reflect.Bool:
fn.f = (*encFnInfo).kBool
case reflect.String:
fn.f = (*encFnInfo).kString
case reflect.Float64:
fn.f = (*encFnInfo).kFloat64
case reflect.Float32:
fn.f = (*encFnInfo).kFloat32
case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
fn.f = (*encFnInfo).kInt
case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16:
fn.f = (*encFnInfo).kUint
case reflect.Invalid:
fn.f = (*encFnInfo).kInvalid
case reflect.Slice:
fn.f = (*encFnInfo).kSlice
case reflect.Array:
fn.f = (*encFnInfo).kArray
case reflect.Struct:
fn.f = (*encFnInfo).kStruct
// case reflect.Ptr:
// fn.f = (*encFnInfo).kPtr
case reflect.Interface:
fn.f = (*encFnInfo).kInterface
case reflect.Map:
fn.f = (*encFnInfo).kMap
default:
fn.f = (*encFnInfo).kErr
}
}
if useMapForCodecCache {
if e.f == nil {
e.f = make(map[uintptr]encFn, 16)
}
e.f[rtid] = fn
} else {
e.s = append(e.s, fn)
e.x = append(e.x, rtid)
}
}
fn.f(fn.i, rv)
}
func (e *Encoder) encRawExt(re RawExt) {
if re.Data == nil {
e.e.encodeNil()
return
}
if e.hh.writeExt() {
e.e.encodeExtPreamble(re.Tag, len(re.Data))
e.w.writeb(re.Data)
} else {
e.e.encodeStringBytes(c_RAW, re.Data)
}
}
// ---------------------------------------------
// short circuit functions for common maps and slices
func (e *Encoder) encSliceIntf(v []interface{}) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.encode(v2)
}
}
func (e *Encoder) encSliceStr(v []string) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.e.encodeString(c_UTF8, v2)
}
}
func (e *Encoder) encSliceInt64(v []int64) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.e.encodeInt(v2)
}
}
func (e *Encoder) encSliceUint64(v []uint64) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.e.encodeUint(v2)
}
}
func (e *Encoder) encMapStrStr(v map[string]string) {
e.e.encodeMapPreamble(len(v))
asSymbols := e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
for k2, v2 := range v {
if asSymbols {
e.e.encodeSymbol(k2)
} else {
e.e.encodeString(c_UTF8, k2)
}
e.e.encodeString(c_UTF8, v2)
}
}
func (e *Encoder) encMapStrIntf(v map[string]interface{}) {
e.e.encodeMapPreamble(len(v))
asSymbols := e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
for k2, v2 := range v {
if asSymbols {
e.e.encodeSymbol(k2)
} else {
e.e.encodeString(c_UTF8, k2)
}
e.encode(v2)
}
}
func (e *Encoder) encMapInt64Intf(v map[int64]interface{}) {
e.e.encodeMapPreamble(len(v))
for k2, v2 := range v {
e.e.encodeInt(k2)
e.encode(v2)
}
}
func (e *Encoder) encMapUint64Intf(v map[uint64]interface{}) {
e.e.encodeMapPreamble(len(v))
for k2, v2 := range v {
e.e.encodeUint(uint64(k2))
e.encode(v2)
}
}
func (e *Encoder) encMapIntfIntf(v map[interface{}]interface{}) {
e.e.encodeMapPreamble(len(v))
for k2, v2 := range v {
e.encode(k2)
e.encode(v2)
}
}
// ----------------------------------------
func encErr(format string, params ...interface{}) {
doPanic(msgTagEnc, format, params...)
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Go
1
https://gitee.com/meoom/kubernetes.git
git@gitee.com:meoom/kubernetes.git
meoom
kubernetes
kubernetes
v1.2.6-beta.0

搜索帮助

344bd9b3 5694891 D2dac590 5694891