1 Star 0 Fork 0

zhuchance/kubernetes

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
density.go 23.12 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
/*
Copyright 2015 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package e2e
import (
"fmt"
"math"
"os"
"sort"
"strconv"
"sync"
"time"
"k8s.io/kubernetes/pkg/api"
"k8s.io/kubernetes/pkg/api/resource"
"k8s.io/kubernetes/pkg/api/unversioned"
"k8s.io/kubernetes/pkg/client/cache"
client "k8s.io/kubernetes/pkg/client/unversioned"
controllerframework "k8s.io/kubernetes/pkg/controller/framework"
"k8s.io/kubernetes/pkg/fields"
"k8s.io/kubernetes/pkg/labels"
"k8s.io/kubernetes/pkg/runtime"
"k8s.io/kubernetes/pkg/util"
"k8s.io/kubernetes/pkg/watch"
"k8s.io/kubernetes/test/e2e/framework"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
const (
MinSaturationThreshold = 2 * time.Minute
MinPodsPerSecondThroughput = 8
)
// Maximum container failures this test tolerates before failing.
var MaxContainerFailures = 0
func density30AddonResourceVerifier(numNodes int) map[string]framework.ResourceConstraint {
var apiserverMem uint64
var controllerMem uint64
var schedulerMem uint64
apiserverCPU := math.MaxFloat32
apiserverMem = math.MaxUint64
controllerCPU := math.MaxFloat32
controllerMem = math.MaxUint64
schedulerCPU := math.MaxFloat32
schedulerMem = math.MaxUint64
if framework.ProviderIs("kubemark") {
if numNodes <= 5 {
apiserverCPU = 0.15
apiserverMem = 150 * (1024 * 1024)
controllerCPU = 0.1
controllerMem = 100 * (1024 * 1024)
schedulerCPU = 0.05
schedulerMem = 50 * (1024 * 1024)
} else if numNodes <= 100 {
apiserverCPU = 1.5
apiserverMem = 1500 * (1024 * 1024)
controllerCPU = 0.75
controllerMem = 750 * (1024 * 1024)
schedulerCPU = 0.75
schedulerMem = 500 * (1024 * 1024)
} else if numNodes <= 500 {
apiserverCPU = 2.25
apiserverMem = 2500 * (1024 * 1024)
controllerCPU = 1.0
controllerMem = 1100 * (1024 * 1024)
schedulerCPU = 0.8
schedulerMem = 500 * (1024 * 1024)
} else if numNodes <= 1000 {
apiserverCPU = 4
apiserverMem = 4000 * (1024 * 1024)
controllerCPU = 3
controllerMem = 2000 * (1024 * 1024)
schedulerCPU = 1.5
schedulerMem = 750 * (1024 * 1024)
}
} else {
if numNodes <= 100 {
apiserverCPU = 1.5
apiserverMem = 1300 * (1024 * 1024)
controllerCPU = 0.5
controllerMem = 300 * (1024 * 1024)
schedulerCPU = 0.4
schedulerMem = 150 * (1024 * 1024)
}
}
constraints := make(map[string]framework.ResourceConstraint)
constraints["fluentd-elasticsearch"] = framework.ResourceConstraint{
CPUConstraint: 0.2,
MemoryConstraint: 250 * (1024 * 1024),
}
constraints["elasticsearch-logging"] = framework.ResourceConstraint{
CPUConstraint: 2,
// TODO: bring it down to 750MB again, when we lower Kubelet verbosity level. I.e. revert #19164
MemoryConstraint: 5000 * (1024 * 1024),
}
constraints["heapster"] = framework.ResourceConstraint{
CPUConstraint: 2,
MemoryConstraint: 1800 * (1024 * 1024),
}
constraints["kibana-logging"] = framework.ResourceConstraint{
CPUConstraint: 0.2,
MemoryConstraint: 100 * (1024 * 1024),
}
constraints["kube-proxy"] = framework.ResourceConstraint{
CPUConstraint: 0.05,
MemoryConstraint: 20 * (1024 * 1024),
}
constraints["l7-lb-controller"] = framework.ResourceConstraint{
CPUConstraint: 0.05,
MemoryConstraint: 20 * (1024 * 1024),
}
constraints["influxdb"] = framework.ResourceConstraint{
CPUConstraint: 2,
MemoryConstraint: 500 * (1024 * 1024),
}
constraints["kube-apiserver"] = framework.ResourceConstraint{
CPUConstraint: apiserverCPU,
MemoryConstraint: apiserverMem,
}
constraints["kube-controller-manager"] = framework.ResourceConstraint{
CPUConstraint: controllerCPU,
MemoryConstraint: controllerMem,
}
constraints["kube-scheduler"] = framework.ResourceConstraint{
CPUConstraint: schedulerCPU,
MemoryConstraint: schedulerMem,
}
return constraints
}
func logPodStartupStatus(c *client.Client, expectedPods int, ns string, observedLabels map[string]string, period time.Duration, stopCh chan struct{}) {
label := labels.SelectorFromSet(labels.Set(observedLabels))
podStore := framework.NewPodStore(c, ns, label, fields.Everything())
defer podStore.Stop()
ticker := time.NewTicker(period)
for {
select {
case <-ticker.C:
pods := podStore.List()
startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods)
startupStatus.Print("Density")
case <-stopCh:
pods := podStore.List()
startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods)
startupStatus.Print("Density")
return
}
}
}
// This test suite can take a long time to run, and can affect or be affected by other tests.
// So by default it is added to the ginkgo.skip list (see driver.go).
// To run this suite you must explicitly ask for it by setting the
// -t/--test flag or ginkgo.focus flag.
// IMPORTANT: This test is designed to work on large (>= 100 Nodes) clusters. For smaller ones
// results will not be representative for control-plane performance as we'll start hitting
// limits on Docker's concurrent container startup.
var _ = framework.KubeDescribe("Density", func() {
var c *client.Client
var nodeCount int
var RCName string
var additionalPodsPrefix string
var ns string
var uuid string
var e2eStartupTime time.Duration
var totalPods int
var nodeCpuCapacity int64
var nodeMemCapacity int64
// Gathers data prior to framework namespace teardown
AfterEach(func() {
saturationThreshold := time.Duration((totalPods / MinPodsPerSecondThroughput)) * time.Second
if saturationThreshold < MinSaturationThreshold {
saturationThreshold = MinSaturationThreshold
}
Expect(e2eStartupTime).NotTo(BeNumerically(">", saturationThreshold))
saturationData := framework.SaturationTime{
TimeToSaturate: e2eStartupTime,
NumberOfNodes: nodeCount,
NumberOfPods: totalPods,
Throughput: float32(totalPods) / float32(e2eStartupTime/time.Second),
}
framework.Logf("Cluster saturation time: %s", framework.PrettyPrintJSON(saturationData))
// Verify latency metrics.
highLatencyRequests, err := framework.HighLatencyRequests(c)
framework.ExpectNoError(err)
Expect(highLatencyRequests).NotTo(BeNumerically(">", 0), "There should be no high-latency requests")
// Verify scheduler metrics.
// TODO: Reset metrics at the beginning of the test.
// We should do something similar to how we do it for APIserver.
framework.ExpectNoError(framework.VerifySchedulerLatency(c))
})
// Explicitly put here, to delete namespace at the end of the test
// (after measuring latency metrics, etc.).
f := framework.NewDefaultFramework("density")
f.NamespaceDeletionTimeout = time.Hour
BeforeEach(func() {
c = f.Client
ns = f.Namespace.Name
// In large clusters we may get to this point but still have a bunch
// of nodes without Routes created. Since this would make a node
// unschedulable, we need to wait until all of them are schedulable.
framework.ExpectNoError(framework.WaitForAllNodesSchedulable(c))
nodes := framework.GetReadySchedulableNodesOrDie(c)
nodeCount = len(nodes.Items)
Expect(nodeCount).NotTo(BeZero())
if nodeCount == 30 {
f.AddonResourceConstraints = func() map[string]framework.ResourceConstraint { return density30AddonResourceVerifier(nodeCount) }()
}
nodeCpuCapacity = nodes.Items[0].Status.Allocatable.Cpu().MilliValue()
nodeMemCapacity = nodes.Items[0].Status.Allocatable.Memory().Value()
// Terminating a namespace (deleting the remaining objects from it - which
// generally means events) can affect the current run. Thus we wait for all
// terminating namespace to be finally deleted before starting this test.
err := framework.CheckTestingNSDeletedExcept(c, ns)
framework.ExpectNoError(err)
uuid = string(util.NewUUID())
framework.ExpectNoError(framework.ResetMetrics(c))
framework.ExpectNoError(os.Mkdir(fmt.Sprintf(framework.TestContext.OutputDir+"/%s", uuid), 0777))
framework.Logf("Listing nodes for easy debugging:\n")
for _, node := range nodes.Items {
var internalIP, externalIP string
for _, address := range node.Status.Addresses {
if address.Type == api.NodeInternalIP {
internalIP = address.Address
}
if address.Type == api.NodeExternalIP {
externalIP = address.Address
}
}
framework.Logf("Name: %v, clusterIP: %v, externalIP: %v", node.ObjectMeta.Name, internalIP, externalIP)
}
})
type Density struct {
// Controls if e2e latency tests should be run (they are slow)
runLatencyTest bool
podsPerNode int
// Controls how often the apiserver is polled for pods
interval time.Duration
}
densityTests := []Density{
// TODO: Expose runLatencyTest as ginkgo flag.
{podsPerNode: 3, runLatencyTest: false, interval: 10 * time.Second},
{podsPerNode: 30, runLatencyTest: true, interval: 10 * time.Second},
{podsPerNode: 50, runLatencyTest: false, interval: 10 * time.Second},
{podsPerNode: 95, runLatencyTest: true, interval: 10 * time.Second},
{podsPerNode: 100, runLatencyTest: false, interval: 10 * time.Second},
}
for _, testArg := range densityTests {
name := fmt.Sprintf("should allow starting %d pods per node", testArg.podsPerNode)
switch testArg.podsPerNode {
case 30:
name = "[Feature:Performance] " + name
case 95:
name = "[Feature:HighDensityPerformance]" + name
default:
name = "[Feature:ManualPerformance] " + name
}
itArg := testArg
It(name, func() {
fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid))
framework.ExpectNoError(err)
defer fileHndl.Close()
podsPerNode := itArg.podsPerNode
totalPods = podsPerNode * nodeCount
// TODO: loop to podsPerNode instead of 1 when we're ready.
numberOrRCs := 1
RCConfigs := make([]framework.RCConfig, numberOrRCs)
for i := 0; i < numberOrRCs; i++ {
RCName = "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid
RCConfigs[i] = framework.RCConfig{Client: c,
Image: framework.GetPauseImageName(f.Client),
Name: RCName,
Namespace: ns,
Labels: map[string]string{"type": "densityPod"},
PollInterval: itArg.interval,
PodStatusFile: fileHndl,
Replicas: (totalPods + numberOrRCs - 1) / numberOrRCs,
CpuRequest: nodeCpuCapacity / 100,
MemRequest: nodeMemCapacity / 100,
MaxContainerFailures: &MaxContainerFailures,
Silent: true,
}
}
// Create a listener for events.
// eLock is a lock protects the events
var eLock sync.Mutex
events := make([](*api.Event), 0)
_, controller := controllerframework.NewInformer(
&cache.ListWatch{
ListFunc: func(options api.ListOptions) (runtime.Object, error) {
return c.Events(ns).List(options)
},
WatchFunc: func(options api.ListOptions) (watch.Interface, error) {
return c.Events(ns).Watch(options)
},
},
&api.Event{},
0,
controllerframework.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
eLock.Lock()
defer eLock.Unlock()
events = append(events, obj.(*api.Event))
},
},
)
stop := make(chan struct{})
go controller.Run(stop)
// Create a listener for api updates
// uLock is a lock protects the updateCount
var uLock sync.Mutex
updateCount := 0
label := labels.SelectorFromSet(labels.Set(map[string]string{"type": "densityPod"}))
_, updateController := controllerframework.NewInformer(
&cache.ListWatch{
ListFunc: func(options api.ListOptions) (runtime.Object, error) {
options.LabelSelector = label
return c.Pods(ns).List(options)
},
WatchFunc: func(options api.ListOptions) (watch.Interface, error) {
options.LabelSelector = label
return c.Pods(ns).Watch(options)
},
},
&api.Pod{},
0,
controllerframework.ResourceEventHandlerFuncs{
UpdateFunc: func(_, _ interface{}) {
uLock.Lock()
defer uLock.Unlock()
updateCount++
},
},
)
go updateController.Run(stop)
// Start all replication controllers.
startTime := time.Now()
wg := sync.WaitGroup{}
wg.Add(len(RCConfigs))
for i := range RCConfigs {
rcConfig := RCConfigs[i]
go func() {
framework.ExpectNoError(framework.RunRC(rcConfig))
wg.Done()
}()
}
logStopCh := make(chan struct{})
go logPodStartupStatus(c, totalPods, ns, map[string]string{"type": "densityPod"}, itArg.interval, logStopCh)
wg.Wait()
e2eStartupTime = time.Now().Sub(startTime)
close(logStopCh)
framework.Logf("E2E startup time for %d pods: %v", totalPods, e2eStartupTime)
framework.Logf("Throughput (pods/s) during cluster saturation phase: %v", float32(totalPods)/float32(e2eStartupTime/time.Second))
By("Waiting for all events to be recorded")
last := -1
current := len(events)
lastCount := -1
currentCount := updateCount
timeout := 10 * time.Minute
for start := time.Now(); (last < current || lastCount < currentCount) && time.Since(start) < timeout; time.Sleep(10 * time.Second) {
func() {
eLock.Lock()
defer eLock.Unlock()
last = current
current = len(events)
}()
func() {
uLock.Lock()
defer uLock.Unlock()
lastCount = currentCount
currentCount = updateCount
}()
}
close(stop)
if current != last {
framework.Logf("Warning: Not all events were recorded after waiting %.2f minutes", timeout.Minutes())
}
framework.Logf("Found %d events", current)
if currentCount != lastCount {
framework.Logf("Warning: Not all updates were recorded after waiting %.2f minutes", timeout.Minutes())
}
framework.Logf("Found %d updates", currentCount)
// Tune the threshold for allowed failures.
badEvents := framework.BadEvents(events)
Expect(badEvents).NotTo(BeNumerically(">", int(math.Floor(0.01*float64(totalPods)))))
// Print some data about Pod to Node allocation
By("Printing Pod to Node allocation data")
podList, err := c.Pods(api.NamespaceAll).List(api.ListOptions{})
framework.ExpectNoError(err)
pausePodAllocation := make(map[string]int)
systemPodAllocation := make(map[string][]string)
for _, pod := range podList.Items {
if pod.Namespace == api.NamespaceSystem {
systemPodAllocation[pod.Spec.NodeName] = append(systemPodAllocation[pod.Spec.NodeName], pod.Name)
} else {
pausePodAllocation[pod.Spec.NodeName]++
}
}
nodeNames := make([]string, 0)
for k := range pausePodAllocation {
nodeNames = append(nodeNames, k)
}
sort.Strings(nodeNames)
for _, node := range nodeNames {
framework.Logf("%v: %v pause pods, system pods: %v", node, pausePodAllocation[node], systemPodAllocation[node])
}
if itArg.runLatencyTest {
By("Scheduling additional Pods to measure startup latencies")
createTimes := make(map[string]unversioned.Time, 0)
nodes := make(map[string]string, 0)
scheduleTimes := make(map[string]unversioned.Time, 0)
runTimes := make(map[string]unversioned.Time, 0)
watchTimes := make(map[string]unversioned.Time, 0)
var mutex sync.Mutex
checkPod := func(p *api.Pod) {
mutex.Lock()
defer mutex.Unlock()
defer GinkgoRecover()
if p.Status.Phase == api.PodRunning {
if _, found := watchTimes[p.Name]; !found {
watchTimes[p.Name] = unversioned.Now()
createTimes[p.Name] = p.CreationTimestamp
nodes[p.Name] = p.Spec.NodeName
var startTime unversioned.Time
for _, cs := range p.Status.ContainerStatuses {
if cs.State.Running != nil {
if startTime.Before(cs.State.Running.StartedAt) {
startTime = cs.State.Running.StartedAt
}
}
}
if startTime != unversioned.NewTime(time.Time{}) {
runTimes[p.Name] = startTime
} else {
framework.Failf("Pod %v is reported to be running, but none of its containers is", p.Name)
}
}
}
}
additionalPodsPrefix = "density-latency-pod"
latencyPodsStore, controller := controllerframework.NewInformer(
&cache.ListWatch{
ListFunc: func(options api.ListOptions) (runtime.Object, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix})
return c.Pods(ns).List(options)
},
WatchFunc: func(options api.ListOptions) (watch.Interface, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix})
return c.Pods(ns).Watch(options)
},
},
&api.Pod{},
0,
controllerframework.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
p, ok := obj.(*api.Pod)
Expect(ok).To(Equal(true))
go checkPod(p)
},
UpdateFunc: func(oldObj, newObj interface{}) {
p, ok := newObj.(*api.Pod)
Expect(ok).To(Equal(true))
go checkPod(p)
},
},
)
stopCh := make(chan struct{})
go controller.Run(stopCh)
// Create some additional pods with throughput ~5 pods/sec.
var wg sync.WaitGroup
wg.Add(nodeCount)
// Explicitly set requests here.
// Thanks to it we trigger increasing priority function by scheduling
// a pod to a node, which in turn will result in spreading latency pods
// more evenly between nodes.
cpuRequest := *resource.NewMilliQuantity(nodeCpuCapacity/5, resource.DecimalSI)
memRequest := *resource.NewQuantity(nodeMemCapacity/5, resource.DecimalSI)
if podsPerNode > 30 {
// This is to make them schedulable on high-density tests
// (e.g. 100 pods/node kubemark).
cpuRequest = *resource.NewMilliQuantity(0, resource.DecimalSI)
memRequest = *resource.NewQuantity(0, resource.DecimalSI)
}
for i := 1; i <= nodeCount; i++ {
name := additionalPodsPrefix + "-" + strconv.Itoa(i)
go createRunningPodFromRC(&wg, c, name, ns, framework.GetPauseImageName(f.Client), additionalPodsPrefix, cpuRequest, memRequest)
time.Sleep(200 * time.Millisecond)
}
wg.Wait()
By("Waiting for all Pods begin observed by the watch...")
for start := time.Now(); len(watchTimes) < nodeCount; time.Sleep(10 * time.Second) {
if time.Since(start) < timeout {
framework.Failf("Timeout reached waiting for all Pods being observed by the watch.")
}
}
close(stopCh)
nodeToLatencyPods := make(map[string]int)
for _, item := range latencyPodsStore.List() {
pod := item.(*api.Pod)
nodeToLatencyPods[pod.Spec.NodeName]++
}
for node, count := range nodeToLatencyPods {
if count > 1 {
framework.Logf("%d latency pods scheduled on %s", count, node)
}
}
selector := fields.Set{
"involvedObject.kind": "Pod",
"involvedObject.namespace": ns,
"source": api.DefaultSchedulerName,
}.AsSelector()
options := api.ListOptions{FieldSelector: selector}
schedEvents, err := c.Events(ns).List(options)
framework.ExpectNoError(err)
for k := range createTimes {
for _, event := range schedEvents.Items {
if event.InvolvedObject.Name == k {
scheduleTimes[k] = event.FirstTimestamp
break
}
}
}
scheduleLag := make([]framework.PodLatencyData, 0)
startupLag := make([]framework.PodLatencyData, 0)
watchLag := make([]framework.PodLatencyData, 0)
schedToWatchLag := make([]framework.PodLatencyData, 0)
e2eLag := make([]framework.PodLatencyData, 0)
for name, create := range createTimes {
sched, ok := scheduleTimes[name]
Expect(ok).To(Equal(true))
run, ok := runTimes[name]
Expect(ok).To(Equal(true))
watch, ok := watchTimes[name]
Expect(ok).To(Equal(true))
node, ok := nodes[name]
Expect(ok).To(Equal(true))
scheduleLag = append(scheduleLag, framework.PodLatencyData{Name: name, Node: node, Latency: sched.Time.Sub(create.Time)})
startupLag = append(startupLag, framework.PodLatencyData{Name: name, Node: node, Latency: run.Time.Sub(sched.Time)})
watchLag = append(watchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(run.Time)})
schedToWatchLag = append(schedToWatchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(sched.Time)})
e2eLag = append(e2eLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(create.Time)})
}
sort.Sort(framework.LatencySlice(scheduleLag))
sort.Sort(framework.LatencySlice(startupLag))
sort.Sort(framework.LatencySlice(watchLag))
sort.Sort(framework.LatencySlice(schedToWatchLag))
sort.Sort(framework.LatencySlice(e2eLag))
framework.PrintLatencies(scheduleLag, "worst schedule latencies")
framework.PrintLatencies(startupLag, "worst run-after-schedule latencies")
framework.PrintLatencies(watchLag, "worst watch latencies")
framework.PrintLatencies(schedToWatchLag, "worst scheduled-to-end total latencies")
framework.PrintLatencies(e2eLag, "worst e2e total latencies")
// Test whether e2e pod startup time is acceptable.
podStartupLatency := framework.PodStartupLatency{Latency: framework.ExtractLatencyMetrics(e2eLag)}
framework.ExpectNoError(framework.VerifyPodStartupLatency(podStartupLatency))
framework.LogSuspiciousLatency(startupLag, e2eLag, nodeCount, c)
}
By("Deleting ReplicationController")
// We explicitly delete all pods to have API calls necessary for deletion accounted in metrics.
for i := range RCConfigs {
rcName := RCConfigs[i].Name
rc, err := c.ReplicationControllers(ns).Get(rcName)
if err == nil && rc.Spec.Replicas != 0 {
By("Cleaning up the replication controller")
err := framework.DeleteRC(c, ns, rcName)
framework.ExpectNoError(err)
}
}
By("Removing additional replication controllers if any")
for i := 1; i <= nodeCount; i++ {
name := additionalPodsPrefix + "-" + strconv.Itoa(i)
c.ReplicationControllers(ns).Delete(name, nil)
}
})
}
})
func createRunningPodFromRC(wg *sync.WaitGroup, c *client.Client, name, ns, image, podType string, cpuRequest, memRequest resource.Quantity) {
defer GinkgoRecover()
defer wg.Done()
labels := map[string]string{
"type": podType,
"name": name,
}
rc := &api.ReplicationController{
ObjectMeta: api.ObjectMeta{
Name: name,
Labels: labels,
},
Spec: api.ReplicationControllerSpec{
Replicas: 1,
Selector: labels,
Template: &api.PodTemplateSpec{
ObjectMeta: api.ObjectMeta{
Labels: labels,
},
Spec: api.PodSpec{
Containers: []api.Container{
{
Name: name,
Image: image,
Resources: api.ResourceRequirements{
Requests: api.ResourceList{
api.ResourceCPU: cpuRequest,
api.ResourceMemory: memRequest,
},
},
},
},
DNSPolicy: api.DNSDefault,
},
},
},
}
_, err := c.ReplicationControllers(ns).Create(rc)
framework.ExpectNoError(err)
framework.ExpectNoError(framework.WaitForRCPodsRunning(c, ns, name))
framework.Logf("Found pod '%s' running", name)
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Go
1
https://gitee.com/meoom/kubernetes.git
git@gitee.com:meoom/kubernetes.git
meoom
kubernetes
kubernetes
v1.3.10

搜索帮助