代码拉取完成,页面将自动刷新
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"strings"
"time"
"k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/uuid"
"k8s.io/kubernetes/test/e2e/framework"
imageutils "k8s.io/kubernetes/test/utils/image"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
const (
testPodNamePrefix = "nvidia-gpu-"
cosOSImage = "Container-Optimized OS from Google"
// Nvidia driver installation can take upwards of 5 minutes.
driverInstallTimeout = 10 * time.Minute
)
type podCreationFuncType func() *v1.Pod
var (
gpuResourceName v1.ResourceName
dsYamlUrl string
podCreationFunc podCreationFuncType
)
func makeCudaAdditionTestPod() *v1.Pod {
podName := testPodNamePrefix + string(uuid.NewUUID())
testPod := &v1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: podName,
},
Spec: v1.PodSpec{
RestartPolicy: v1.RestartPolicyNever,
Containers: []v1.Container{
{
Name: "vector-addition",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
VolumeMounts: []v1.VolumeMount{
{
Name: "nvidia-libraries",
MountPath: "/usr/local/nvidia/lib64",
},
},
},
},
Volumes: []v1.Volume{
{
Name: "nvidia-libraries",
VolumeSource: v1.VolumeSource{
HostPath: &v1.HostPathVolumeSource{
Path: "/home/kubernetes/bin/nvidia/lib",
},
},
},
},
},
}
return testPod
}
func makeCudaAdditionDevicePluginTestPod() *v1.Pod {
podName := testPodNamePrefix + string(uuid.NewUUID())
testPod := &v1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: podName,
},
Spec: v1.PodSpec{
RestartPolicy: v1.RestartPolicyNever,
Containers: []v1.Container{
{
Name: "vector-addition",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
},
},
},
}
return testPod
}
func isClusterRunningCOS(f *framework.Framework) bool {
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
for _, node := range nodeList.Items {
if !strings.Contains(node.Status.NodeInfo.OSImage, cosOSImage) {
return false
}
}
return true
}
func areGPUsAvailableOnAllSchedulableNodes(f *framework.Framework) bool {
framework.Logf("Getting list of Nodes from API server")
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
for _, node := range nodeList.Items {
if node.Spec.Unschedulable {
continue
}
framework.Logf("gpuResourceName %s", gpuResourceName)
if val, ok := node.Status.Capacity[gpuResourceName]; !ok || val.Value() == 0 {
framework.Logf("Nvidia GPUs not available on Node: %q", node.Name)
return false
}
}
framework.Logf("Nvidia GPUs exist on all schedulable nodes")
return true
}
func getGPUsAvailable(f *framework.Framework) int64 {
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
var gpusAvailable int64
for _, node := range nodeList.Items {
if val, ok := node.Status.Capacity[gpuResourceName]; ok {
gpusAvailable += (&val).Value()
}
}
return gpusAvailable
}
func testNvidiaGPUsOnCOS(f *framework.Framework) {
// Skip the test if the base image is not COS.
// TODO: Add support for other base images.
// CUDA apps require host mounts which is not portable across base images (yet).
framework.Logf("Checking base image")
if !isClusterRunningCOS(f) {
Skip("Nvidia GPU tests are supproted only on Container Optimized OS image currently")
}
framework.Logf("Cluster is running on COS. Proceeding with test")
if f.BaseName == "device-plugin-gpus" {
dsYamlUrl = framework.GPUDevicePluginDSYAML
gpuResourceName = framework.NVIDIAGPUResourceName
podCreationFunc = makeCudaAdditionDevicePluginTestPod
} else {
dsYamlUrl = "https://raw.githubusercontent.com/ContainerEngine/accelerators/master/cos-nvidia-gpu-installer/daemonset.yaml"
gpuResourceName = v1.ResourceNvidiaGPU
podCreationFunc = makeCudaAdditionTestPod
}
// GPU drivers might have already been installed.
if !areGPUsAvailableOnAllSchedulableNodes(f) {
// Install Nvidia Drivers.
ds, err := framework.DsFromManifest(dsYamlUrl)
Expect(err).NotTo(HaveOccurred())
ds.Namespace = f.Namespace.Name
_, err = f.ClientSet.Extensions().DaemonSets(f.Namespace.Name).Create(ds)
framework.ExpectNoError(err, "failed to create daemonset")
framework.Logf("Successfully created daemonset to install Nvidia drivers. Waiting for drivers to be installed and GPUs to be available in Node Capacity...")
// Wait for Nvidia GPUs to be available on nodes
Eventually(func() bool {
return areGPUsAvailableOnAllSchedulableNodes(f)
}, driverInstallTimeout, time.Second).Should(BeTrue())
}
framework.Logf("Creating as many pods as there are Nvidia GPUs and have the pods run a CUDA app")
podList := []*v1.Pod{}
for i := int64(0); i < getGPUsAvailable(f); i++ {
podList = append(podList, f.PodClient().Create(podCreationFunc()))
}
framework.Logf("Wait for all test pods to succeed")
// Wait for all pods to succeed
for _, po := range podList {
f.PodClient().WaitForSuccess(po.Name, 5*time.Minute)
}
}
var _ = SIGDescribe("[Feature:GPU]", func() {
f := framework.NewDefaultFramework("gpus")
It("run Nvidia GPU tests on Container Optimized OS only", func() {
testNvidiaGPUsOnCOS(f)
})
})
var _ = SIGDescribe("[Feature:GPUDevicePlugin]", func() {
f := framework.NewDefaultFramework("device-plugin-gpus")
It("run Nvidia GPU Device Plugin tests on Container Optimized OS only", func() {
testNvidiaGPUsOnCOS(f)
})
})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。