代码拉取完成,页面将自动刷新
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package framework
import (
"bytes"
"fmt"
"math"
"sort"
"strconv"
"strings"
"sync"
"text/tabwriter"
"time"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
utilruntime "k8s.io/apimachinery/pkg/util/runtime"
clientset "k8s.io/client-go/kubernetes"
"k8s.io/kubernetes/pkg/util/system"
)
const (
resourceDataGatheringPeriod = 60 * time.Second
probeDuration = 15 * time.Second
)
type ResourceConstraint struct {
CPUConstraint float64
MemoryConstraint uint64
}
type SingleContainerSummary struct {
Name string
Cpu float64
Mem uint64
}
// we can't have int here, as JSON does not accept integer keys.
type ResourceUsageSummary map[string][]SingleContainerSummary
func (s *ResourceUsageSummary) PrintHumanReadable() string {
buf := &bytes.Buffer{}
w := tabwriter.NewWriter(buf, 1, 0, 1, ' ', 0)
for perc, summaries := range *s {
buf.WriteString(fmt.Sprintf("%v percentile:\n", perc))
fmt.Fprintf(w, "container\tcpu(cores)\tmemory(MB)\n")
for _, summary := range summaries {
fmt.Fprintf(w, "%q\t%.3f\t%.2f\n", summary.Name, summary.Cpu, float64(summary.Mem)/(1024*1024))
}
w.Flush()
}
return buf.String()
}
func (s *ResourceUsageSummary) PrintJSON() string {
return PrettyPrintJSON(*s)
}
func (s *ResourceUsageSummary) SummaryKind() string {
return "ResourceUsageSummary"
}
func computePercentiles(timeSeries []ResourceUsagePerContainer, percentilesToCompute []int) map[int]ResourceUsagePerContainer {
if len(timeSeries) == 0 {
return make(map[int]ResourceUsagePerContainer)
}
dataMap := make(map[string]*usageDataPerContainer)
for i := range timeSeries {
for name, data := range timeSeries[i] {
if dataMap[name] == nil {
dataMap[name] = &usageDataPerContainer{
cpuData: make([]float64, 0, len(timeSeries)),
memUseData: make([]uint64, 0, len(timeSeries)),
memWorkSetData: make([]uint64, 0, len(timeSeries)),
}
}
dataMap[name].cpuData = append(dataMap[name].cpuData, data.CPUUsageInCores)
dataMap[name].memUseData = append(dataMap[name].memUseData, data.MemoryUsageInBytes)
dataMap[name].memWorkSetData = append(dataMap[name].memWorkSetData, data.MemoryWorkingSetInBytes)
}
}
for _, v := range dataMap {
sort.Float64s(v.cpuData)
sort.Sort(uint64arr(v.memUseData))
sort.Sort(uint64arr(v.memWorkSetData))
}
result := make(map[int]ResourceUsagePerContainer)
for _, perc := range percentilesToCompute {
data := make(ResourceUsagePerContainer)
for k, v := range dataMap {
percentileIndex := int(math.Ceil(float64(len(v.cpuData)*perc)/100)) - 1
data[k] = &ContainerResourceUsage{
Name: k,
CPUUsageInCores: v.cpuData[percentileIndex],
MemoryUsageInBytes: v.memUseData[percentileIndex],
MemoryWorkingSetInBytes: v.memWorkSetData[percentileIndex],
}
}
result[perc] = data
}
return result
}
func leftMergeData(left, right map[int]ResourceUsagePerContainer) map[int]ResourceUsagePerContainer {
result := make(map[int]ResourceUsagePerContainer)
for percentile, data := range left {
result[percentile] = data
if _, ok := right[percentile]; !ok {
continue
}
for k, v := range right[percentile] {
result[percentile][k] = v
}
}
return result
}
type resourceGatherWorker struct {
c clientset.Interface
nodeName string
wg *sync.WaitGroup
containerIDs []string
stopCh chan struct{}
dataSeries []ResourceUsagePerContainer
finished bool
inKubemark bool
}
func (w *resourceGatherWorker) singleProbe() {
data := make(ResourceUsagePerContainer)
if w.inKubemark {
kubemarkData := GetKubemarkMasterComponentsResourceUsage()
if data == nil {
return
}
for k, v := range kubemarkData {
data[k] = &ContainerResourceUsage{
Name: v.Name,
MemoryWorkingSetInBytes: v.MemoryWorkingSetInBytes,
CPUUsageInCores: v.CPUUsageInCores,
}
}
} else {
nodeUsage, err := getOneTimeResourceUsageOnNode(w.c, w.nodeName, probeDuration, func() []string { return w.containerIDs })
if err != nil {
Logf("Error while reading data from %v: %v", w.nodeName, err)
return
}
for k, v := range nodeUsage {
data[k] = v
}
}
w.dataSeries = append(w.dataSeries, data)
}
func (w *resourceGatherWorker) gather(initialSleep time.Duration) {
defer utilruntime.HandleCrash()
defer w.wg.Done()
defer Logf("Closing worker for %v", w.nodeName)
defer func() { w.finished = true }()
select {
case <-time.After(initialSleep):
w.singleProbe()
for {
select {
case <-time.After(resourceDataGatheringPeriod):
w.singleProbe()
case <-w.stopCh:
return
}
}
case <-w.stopCh:
return
}
}
func (g *containerResourceGatherer) getKubeSystemContainersResourceUsage(c clientset.Interface) {
if len(g.workers) == 0 {
return
}
delayPeriod := resourceDataGatheringPeriod / time.Duration(len(g.workers))
delay := time.Duration(0)
for i := range g.workers {
go g.workers[i].gather(delay)
delay += delayPeriod
}
g.workerWg.Wait()
}
type containerResourceGatherer struct {
client clientset.Interface
stopCh chan struct{}
workers []resourceGatherWorker
workerWg sync.WaitGroup
containerIDs []string
options ResourceGathererOptions
}
type ResourceGathererOptions struct {
inKubemark bool
masterOnly bool
}
func NewResourceUsageGatherer(c clientset.Interface, options ResourceGathererOptions) (*containerResourceGatherer, error) {
g := containerResourceGatherer{
client: c,
stopCh: make(chan struct{}),
containerIDs: make([]string, 0),
options: options,
}
if options.inKubemark {
g.workerWg.Add(1)
g.workers = append(g.workers, resourceGatherWorker{
inKubemark: true,
stopCh: g.stopCh,
wg: &g.workerWg,
finished: false,
})
} else {
pods, err := c.Core().Pods("kube-system").List(metav1.ListOptions{})
if err != nil {
Logf("Error while listing Pods: %v", err)
return nil, err
}
for _, pod := range pods.Items {
for _, container := range pod.Status.ContainerStatuses {
g.containerIDs = append(g.containerIDs, container.Name)
}
}
nodeList, err := c.Core().Nodes().List(metav1.ListOptions{})
if err != nil {
Logf("Error while listing Nodes: %v", err)
return nil, err
}
for _, node := range nodeList.Items {
if !options.masterOnly || system.IsMasterNode(node.Name) {
g.workerWg.Add(1)
g.workers = append(g.workers, resourceGatherWorker{
c: c,
nodeName: node.Name,
wg: &g.workerWg,
containerIDs: g.containerIDs,
stopCh: g.stopCh,
finished: false,
inKubemark: false,
})
if options.masterOnly {
break
}
}
}
}
return &g, nil
}
// startGatheringData blocks until stopAndSummarize is called.
func (g *containerResourceGatherer) startGatheringData() {
g.getKubeSystemContainersResourceUsage(g.client)
}
func (g *containerResourceGatherer) stopAndSummarize(percentiles []int, constraints map[string]ResourceConstraint) (*ResourceUsageSummary, error) {
close(g.stopCh)
Logf("Closed stop channel. Waiting for %v workers", len(g.workers))
finished := make(chan struct{})
go func() {
g.workerWg.Wait()
finished <- struct{}{}
}()
select {
case <-finished:
Logf("Waitgroup finished.")
case <-time.After(2 * time.Minute):
unfinished := make([]string, 0)
for i := range g.workers {
if !g.workers[i].finished {
unfinished = append(unfinished, g.workers[i].nodeName)
}
}
Logf("Timed out while waiting for waitgroup, some workers failed to finish: %v", unfinished)
}
if len(percentiles) == 0 {
Logf("Warning! Empty percentile list for stopAndPrintData.")
return &ResourceUsageSummary{}, fmt.Errorf("Failed to get any resource usage data")
}
data := make(map[int]ResourceUsagePerContainer)
for i := range g.workers {
if g.workers[i].finished {
stats := computePercentiles(g.workers[i].dataSeries, percentiles)
data = leftMergeData(stats, data)
}
}
// Workers has been stopped. We need to gather data stored in them.
sortedKeys := []string{}
for name := range data[percentiles[0]] {
sortedKeys = append(sortedKeys, name)
}
sort.Strings(sortedKeys)
violatedConstraints := make([]string, 0)
summary := make(ResourceUsageSummary)
for _, perc := range percentiles {
for _, name := range sortedKeys {
usage := data[perc][name]
summary[strconv.Itoa(perc)] = append(summary[strconv.Itoa(perc)], SingleContainerSummary{
Name: name,
Cpu: usage.CPUUsageInCores,
Mem: usage.MemoryWorkingSetInBytes,
})
// Verifying 99th percentile of resource usage
if perc == 99 {
// Name has a form: <pod_name>/<container_name>
containerName := strings.Split(name, "/")[1]
if constraint, ok := constraints[containerName]; ok {
if usage.CPUUsageInCores > constraint.CPUConstraint {
violatedConstraints = append(
violatedConstraints,
fmt.Sprintf("Container %v is using %v/%v CPU",
name,
usage.CPUUsageInCores,
constraint.CPUConstraint,
),
)
}
if usage.MemoryWorkingSetInBytes > constraint.MemoryConstraint {
violatedConstraints = append(
violatedConstraints,
fmt.Sprintf("Container %v is using %v/%v MB of memory",
name,
float64(usage.MemoryWorkingSetInBytes)/(1024*1024),
float64(constraint.MemoryConstraint)/(1024*1024),
),
)
}
}
}
}
}
if len(violatedConstraints) > 0 {
return &summary, fmt.Errorf(strings.Join(violatedConstraints, "\n"))
}
return &summary, nil
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。