代码拉取完成,页面将自动刷新
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package priorities
import (
"fmt"
"k8s.io/api/core/v1"
v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper"
schedulerapi "k8s.io/kubernetes/plugin/pkg/scheduler/api"
"k8s.io/kubernetes/plugin/pkg/scheduler/schedulercache"
"github.com/golang/glog"
)
// ResourceLimitsPriorityMap is a priority function that increases score of input node by 1 if the node satisfies
// input pod's resource limits. In detail, this priority function works as follows: If a node does not publish its
// allocatable resources (cpu and memory both), the node score is not affected. If a pod does not specify
// its cpu and memory limits both, the node score is not affected. If one or both of cpu and memory limits
// of the pod are satisfied, the node is assigned a score of 1.
// Rationale of choosing the lowest score of 1 is that this is mainly selected to break ties between nodes that have
// same scores assigned by one of least and most requested priority functions.
func ResourceLimitsPriorityMap(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
node := nodeInfo.Node()
if node == nil {
return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
}
allocatableResources := nodeInfo.AllocatableResource()
// compute pod limits
podLimits := getResourceLimits(pod)
cpuScore := computeScore(podLimits.MilliCPU, allocatableResources.MilliCPU)
memScore := computeScore(podLimits.Memory, allocatableResources.Memory)
score := int(0)
if cpuScore == 1 || memScore == 1 {
score = 1
}
if glog.V(10) {
// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
// not logged. There is visible performance gain from it.
glog.Infof(
"%v -> %v: Resource Limits Priority, allocatable %d millicores %d memory bytes, pod limits %d millicores %d memory bytes, score %d",
pod.Name, node.Name,
allocatableResources.MilliCPU, allocatableResources.Memory,
podLimits.MilliCPU, podLimits.Memory,
score,
)
}
return schedulerapi.HostPriority{
Host: node.Name,
Score: score,
}, nil
}
// computeScore return 1 if limit value is less than or equal to allocable
// value, otherwise it returns 0.
func computeScore(limit, allocatable int64) int64 {
if limit != 0 && allocatable != 0 && limit <= allocatable {
return 1
}
return 0
}
// getResourceLimits computes resource limits for input pod.
// The reason to create this new function is to be consistent with other
// priority functions because most or perhaps all priority functions work
// with schedulercache.Resource.
// TODO: cache it as part of metadata passed to priority functions.
func getResourceLimits(pod *v1.Pod) *schedulercache.Resource {
result := &schedulercache.Resource{}
for _, container := range pod.Spec.Containers {
result.Add(container.Resources.Limits)
}
// take max_resource(sum_pod, any_init_container)
for _, container := range pod.Spec.InitContainers {
for rName, rQuantity := range container.Resources.Limits {
switch rName {
case v1.ResourceMemory:
if mem := rQuantity.Value(); mem > result.Memory {
result.Memory = mem
}
case v1.ResourceCPU:
if cpu := rQuantity.MilliValue(); cpu > result.MilliCPU {
result.MilliCPU = cpu
}
// keeping these resources though score computation in other priority functions and in this
// are only computed based on cpu and memory only.
case v1.ResourceEphemeralStorage:
if ephemeralStorage := rQuantity.Value(); ephemeralStorage > result.EphemeralStorage {
result.EphemeralStorage = ephemeralStorage
}
case v1.ResourceNvidiaGPU:
if gpu := rQuantity.Value(); gpu > result.NvidiaGPU {
result.NvidiaGPU = gpu
}
default:
if v1helper.IsScalarResourceName(rName) {
value := rQuantity.Value()
if value > result.ScalarResources[rName] {
result.SetScalar(rName, value)
}
}
}
}
}
return result
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。