Ai
368 Star 1.6K Fork 1.1K

MindSpore/docs

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
linear_regression.py 1.60 KB
一键复制 编辑 原始数据 按行查看 历史
lvmingfu 提交于 2020-09-16 19:39 +08:00 . modify linear_regression files in tutorials
import numpy as np
from mindspore import dataset as ds
from mindspore.common.initializer import Normal
from mindspore import nn
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
def get_data(num, w=2.0, b=3.0):
for i in range(num):
x = np.random.uniform(-10.0, 10.0)
noise = np.random.normal(0, 1)
y = x * w + b + noise
yield np.array([x]).astype(np.float32), np.array([y]).astype(np.float32)
def create_dataset(num_data, batch_size=16, repeat_size=1):
input_data = ds.GeneratorDataset(list(get_data(num_data)), column_names=['data','label'])
input_data = input_data.batch(batch_size)
input_data = input_data.repeat(repeat_size)
return input_data
class LinearNet(nn.Cell):
def __init__(self):
super(LinearNet, self).__init__()
self.fc = nn.Dense(1, 1, Normal(0.02), Normal(0.02))
def construct(self, x):
x = self.fc(x)
return x
if __name__ == "__main__":
num_data = 1600
batch_size = 16
repeat_size = 1
lr = 0.005
momentum = 0.9
net = LinearNet()
net_loss = nn.loss.MSELoss()
opt = nn.Momentum(net.trainable_params(), lr, momentum)
model = Model(net, net_loss, opt)
ds_train = create_dataset(num_data, batch_size=batch_size, repeat_size=repeat_size)
model.train(1, ds_train, callbacks=LossMonitor(), dataset_sink_mode=False)
print(net.trainable_params()[0], "\n%s" % net.trainable_params()[1])
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/docs.git
git@gitee.com:mindspore/docs.git
mindspore
docs
docs
r1.0

搜索帮助