代码拉取完成,页面将自动刷新
import numpy as np
from mindspore import dataset as ds
from mindspore.common.initializer import Normal
from mindspore import nn
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
def get_data(num, w=2.0, b=3.0):
for i in range(num):
x = np.random.uniform(-10.0, 10.0)
noise = np.random.normal(0, 1)
y = x * w + b + noise
yield np.array([x]).astype(np.float32), np.array([y]).astype(np.float32)
def create_dataset(num_data, batch_size=16, repeat_size=1):
input_data = ds.GeneratorDataset(list(get_data(num_data)), column_names=['data','label'])
input_data = input_data.batch(batch_size)
input_data = input_data.repeat(repeat_size)
return input_data
class LinearNet(nn.Cell):
def __init__(self):
super(LinearNet, self).__init__()
self.fc = nn.Dense(1, 1, Normal(0.02), Normal(0.02))
def construct(self, x):
x = self.fc(x)
return x
if __name__ == "__main__":
num_data = 1600
batch_size = 16
repeat_size = 1
lr = 0.005
momentum = 0.9
net = LinearNet()
net_loss = nn.loss.MSELoss()
opt = nn.Momentum(net.trainable_params(), lr, momentum)
model = Model(net, net_loss, opt)
ds_train = create_dataset(num_data, batch_size=batch_size, repeat_size=repeat_size)
model.train(1, ds_train, callbacks=LossMonitor(), dataset_sink_mode=False)
print(net.trainable_params()[0], "\n%s" % net.trainable_params()[1])
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。