代码拉取完成,页面将自动刷新
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Fix randomness example.
This sample code is applicable to GPU and Ascend.
"""
import os
import shutil
import urllib.request
from urllib.parse import urlparse
import argparse
import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.transforms as transforms
import mindspore.dataset.vision as vision
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--device_target', type=str, default='Ascend',
help="the device target, it must be one of ['GPU','Ascend', 'CPU'], default is 'Ascend'.")
parser.add_argument('--device_id', type=int, default=0, help="the device id, default is 0.")
args = parser.parse_args()
def callbackfunc(blocknum, blocksize, totalsize):
percent = 100.0 * blocknum * blocksize / totalsize
percent = min(percent, 100)
print("downloaded {:.1f}".format(percent), end="\r")
def _download_dataset():
ds_url = "https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz"
file_base_name = urlparse(ds_url).path.split("/")[-1]
file_name = os.path.join("./datasets", file_base_name)
if not os.path.exists(file_name):
urllib.request.urlretrieve(ds_url, file_name, callbackfunc)
print("{:*^40}".format("DataSets Downloaded"))
shutil.unpack_archive(file_name, extract_dir="./datasets/cifar-10-binary")
def _copy_dataset(ds_part, dest_path):
data_source_path = "./datasets/cifar-10-binary/cifar-10-batches-bin"
ds_part_source_path = os.path.join(data_source_path, ds_part)
if not os.path.exists(ds_part_source_path):
_download_dataset()
shutil.copy(ds_part_source_path, dest_path)
def download_cifar10_dataset():
"""
Download the cifar10 dataset.
"""
ds_base_path = "./datasets/cifar10"
train_path = os.path.join(ds_base_path, "train")
test_path = os.path.join(ds_base_path, "test")
print("{:*^40}".format("Checking DataSets Path."))
if not os.path.exists(train_path) and not os.path.exists(test_path):
os.makedirs(train_path)
os.makedirs(test_path)
print("{:*^40}".format("Downloading CIFAR-10 DataSets."))
for i in range(1, 6):
train_part = "data_batch_{}.bin".format(i)
if not os.path.exists(os.path.join(train_path, train_part)):
_copy_dataset(train_part, train_path)
pops = train_part + " is ok"
print("{:*^40}".format(pops))
test_part = "test_batch.bin"
if not os.path.exists(os.path.join(test_path, test_part)):
_copy_dataset(test_part, test_path)
print("{:*^40}".format(test_part + " is ok"))
print("{:*^40}".format("Downloaded CIFAR-10 DataSets Already."))
def create_dataset_cifar10(data_path, batch_size=32, repeat_size=1, status="train"):
"""
create dataset for train or test
"""
cifar_ds = ds.Cifar10Dataset(data_path)
rescale = 1.0 / 255.0
shift = 0.0
resize_op = vision.Resize(size=(227, 227))
rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
if status == "train":
random_crop_op = vision.RandomCrop([32, 32], [4, 4, 4, 4])
random_horizontal_op = vision.RandomHorizontalFlip()
channel_swap_op = vision.HWC2CHW()
typecast_op = transforms.TypeCast(ms.int32)
cifar_ds = cifar_ds.map(operations=typecast_op, input_columns="label")
if status == "train":
cifar_ds = cifar_ds.map(operations=random_crop_op, input_columns="image")
cifar_ds = cifar_ds.map(operations=random_horizontal_op, input_columns="image")
cifar_ds = cifar_ds.map(operations=resize_op, input_columns="image")
cifar_ds = cifar_ds.map(operations=rescale_op, input_columns="image")
cifar_ds = cifar_ds.map(operations=normalize_op, input_columns="image")
cifar_ds = cifar_ds.map(operations=channel_swap_op, input_columns="image")
cifar_ds = cifar_ds.shuffle(buffer_size=1000)
cifar_ds = cifar_ds.batch(batch_size, drop_remainder=True)
cifar_ds = cifar_ds.repeat(repeat_size)
return cifar_ds
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid"):
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode=pad_mode)
def fc_with_initialize(input_channels, out_channels):
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
return TruncatedNormal(0.02)
class AlexNet(nn.Cell):
"""
Alexnet
"""
def __init__(self, num_classes=10, channel=3):
super(AlexNet, self).__init__()
self.conv1 = conv(channel, 96, 11, stride=4)
self.conv2 = conv(96, 256, 5, pad_mode="same")
self.conv3 = conv(256, 384, 3, pad_mode="same")
self.conv4 = conv(384, 384, 3, pad_mode="same")
self.conv5 = conv(384, 256, 3, pad_mode="same")
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
self.flatten = nn.Flatten()
self.fc1 = fc_with_initialize(6 * 6 * 256, 4096)
self.fc2 = fc_with_initialize(4096, 4096)
self.fc3 = fc_with_initialize(4096, num_classes)
def construct(self, x):
"""
The construct function.
Args:
x(int): Input of the network.
Returns:
Tensor, the output of the network.
"""
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
def get_lr(current_step, lr_max, total_epochs, steps_per_epoch):
"""
generate learning rate array
Args:
current_step(int): current steps of the training
lr_max(float): max learning rate
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
decay_epoch_index = [0.8 * total_steps]
for i in range(total_steps):
if i < decay_epoch_index[0]:
lr = lr_max
else:
lr = lr_max * 0.1
lr_each_step.append(lr)
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate
def train(ds_train):
"""
the training and evaluation function.
Args:
ds_train(mindspore.dataset): The dataset for training.
Returns:
None.
"""
max_step = 10
device_target = args.device_target
device_id = args.device_id
ms.set_context(mode=ms.GRAPH_MODE, device_target=device_target, device_id=device_id)
network = AlexNet(num_classes=10)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_with_loss = nn.WithLossCell(network, net_loss)
lr = ms.Tensor(get_lr(0, 0.002, 10, ds_train.get_dataset_size()))
net_opt = nn.Momentum(net_with_loss.trainable_params(), learning_rate=lr, momentum=0.9)
# define training net
train_net = nn.TrainOneStepCell(net_with_loss, net_opt)
# set the net to train mode
train_net.set_train()
step = 1
for inputs in ds_train:
output = train_net(*inputs)
print("step: {0}, losses: {1}".format(step, output.asnumpy()))
step += 1
if step > max_step:
break
if __name__ == "__main__":
download_cifar10_dataset()
data_train = create_dataset_cifar10(data_path="./datasets/cifar10/train")
train(data_train)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。