346 Star 1.5K Fork 944

MindSpore/docs

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
profiling_step.py 3.29 KB
一键复制 编辑 原始数据 按行查看 历史
xiaotianci 提交于 2024-06-21 11:44 . fix wrong usage of iterator
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Start profiling on step in callback mode."""
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
from mindspore import Profiler
class Network(nn.Cell):
"""The test net"""
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28 * 28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
def datapipe(dataset, batch_size):
"""Get the dataset."""
image_transforms = [
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
label_transform = transforms.TypeCast(mindspore.int32)
dataset = dataset.map(image_transforms, 'image')
dataset = dataset.map(label_transform, 'label')
dataset = dataset.batch(batch_size)
return dataset
def train(epochs, model, dataset, loss_fn, optimizer):
"""Train the net."""
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
@mindspore.jit
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
loss = ops.depend(loss, optimizer(grads))
return loss
size = dataset.get_dataset_size()
model.set_train()
step = 0
profiler = Profiler(start_profile=False, output_path='./data_step')
iterator = dataset.create_tuple_iterator(num_epochs=epochs)
for e in range(epochs):
print(f"Epoch {e + 1}\n-------------------------------")
for batch, (data, label) in enumerate(iterator):
step = step + 1
step_loss = train_step(data, label)
if batch % 100 == 0:
step_loss, current = step_loss.asnumpy(), batch
print(f"loss: {step_loss:>7f} [{current:>3d}/{size:>3d}]")
if step == 10:
profiler.start()
if step == 20:
profiler.stop()
profiler.analyse()
if __name__ == '__main__':
net = Network()
cross_loss = nn.CrossEntropyLoss()
opt = nn.SGD(net.trainable_params(), 1e-2)
train_dataset = MnistDataset('/dataset/MNIST_Data/train')
train_dataset = datapipe(train_dataset, 64)
train(3, net, train_dataset, cross_loss, opt)
print("Done!")
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/docs.git
git@gitee.com:mindspore/docs.git
mindspore
docs
docs
r2.3.0

搜索帮助