248 Star 846 Fork 47

MindSpore / mindarmour

Create your Gitee Account
Explore and code with more than 6 million developers,Free private repositories !:)
Sign up
Clone or download
mnist_defense_nad.py 4.36 KB
Copy Edit Web IDE Raw Blame History
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""defense example using nad"""
import os
import numpy as np
from mindspore import Tensor
from mindspore import context
from mindspore import nn
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindarmour.adv_robustness.attacks import FastGradientSignMethod
from mindarmour.adv_robustness.defenses import NaturalAdversarialDefense
from mindarmour.utils.logger import LogUtil
from examples.common.networks.lenet5.lenet5_net import LeNet5
from examples.common.dataset.data_processing import generate_mnist_dataset
LOGGER = LogUtil.get_instance()
LOGGER.set_level("INFO")
TAG = 'Nad_Example'
def test_nad_method():
"""
NAD-Defense test.
"""
mnist_path = "../../common/dataset/MNIST"
batch_size = 32
# 1. train original model
ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"),
batch_size=batch_size, repeat_size=1)
net = LeNet5()
loss = SoftmaxCrossEntropyWithLogits(sparse=True)
opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)
model = Model(net, loss, opt, metrics=None)
model.train(10, ds_train, callbacks=[LossMonitor()],
dataset_sink_mode=False)
# 2. get test data
ds_test = generate_mnist_dataset(os.path.join(mnist_path, "test"),
batch_size=batch_size, repeat_size=1)
inputs = []
labels = []
for data in ds_test.create_tuple_iterator(output_numpy=True):
inputs.append(data[0].astype(np.float32))
labels.append(data[1])
inputs = np.concatenate(inputs)
labels = np.concatenate(labels)
# 3. get accuracy of test data on original model
net.set_train(False)
logits = net(Tensor(inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of TEST data on original model is : %s', acc)
# 4. get adv of test data
attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
adv_data = attack.batch_generate(inputs, labels)
LOGGER.info(TAG, 'adv_data.shape is : %s', adv_data.shape)
# 5. get accuracy of adv data on original model
net.set_train(False)
logits = net(Tensor(adv_data)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of adv data on original model is : %s', acc)
# 6. defense
ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"),
batch_size=batch_size, repeat_size=1)
inputs_train = []
labels_train = []
for data in ds_train.create_tuple_iterator(output_numpy=True):
inputs_train.append(data[0].astype(np.float32))
labels_train.append(data[1])
inputs_train = np.concatenate(inputs_train)
labels_train = np.concatenate(labels_train)
net.set_train()
nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt,
bounds=(0.0, 1.0), eps=0.3)
nad.batch_defense(inputs_train, labels_train, batch_size=32, epochs=10)
# 7. get accuracy of test data on defensed model
net.set_train(False)
logits = net(Tensor(inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of TEST data on defensed model is : %s', acc)
# 8. get accuracy of adv data on defensed model
logits = net(Tensor(adv_data)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of adv data on defensed model is : %s', acc)
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_nad_method()
Python
1
https://gitee.com/mindspore/mindarmour.git
git@gitee.com:mindspore/mindarmour.git
mindspore
mindarmour
mindarmour
r1.2

Search