代码拉取完成,页面将自动刷新
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""defense example using nad"""
import os
import numpy as np
from mindspore import Tensor
from mindspore import context
from mindspore import nn
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindarmour.adv_robustness.attacks import FastGradientSignMethod
from mindarmour.adv_robustness.defenses import NaturalAdversarialDefense
from mindarmour.utils.logger import LogUtil
from examples.common.networks.lenet5.lenet5_net import LeNet5
from examples.common.dataset.data_processing import generate_mnist_dataset
LOGGER = LogUtil.get_instance()
LOGGER.set_level("INFO")
TAG = 'Nad_Example'
def test_nad_method():
"""
NAD-Defense test.
"""
mnist_path = "../../common/dataset/MNIST"
batch_size = 32
# 1. train original model
ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"),
batch_size=batch_size, repeat_size=1)
net = LeNet5()
loss = SoftmaxCrossEntropyWithLogits(sparse=True)
opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)
model = Model(net, loss, opt, metrics=None)
model.train(10, ds_train, callbacks=[LossMonitor()],
dataset_sink_mode=False)
# 2. get test data
ds_test = generate_mnist_dataset(os.path.join(mnist_path, "test"),
batch_size=batch_size, repeat_size=1)
inputs = []
labels = []
for data in ds_test.create_tuple_iterator(output_numpy=True):
inputs.append(data[0].astype(np.float32))
labels.append(data[1])
inputs = np.concatenate(inputs)
labels = np.concatenate(labels)
# 3. get accuracy of test data on original model
net.set_train(False)
logits = net(Tensor(inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of TEST data on original model is : %s', acc)
# 4. get adv of test data
attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
adv_data = attack.batch_generate(inputs, labels)
LOGGER.info(TAG, 'adv_data.shape is : %s', adv_data.shape)
# 5. get accuracy of adv data on original model
net.set_train(False)
logits = net(Tensor(adv_data)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of adv data on original model is : %s', acc)
# 6. defense
ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"),
batch_size=batch_size, repeat_size=1)
inputs_train = []
labels_train = []
for data in ds_train.create_tuple_iterator(output_numpy=True):
inputs_train.append(data[0].astype(np.float32))
labels_train.append(data[1])
inputs_train = np.concatenate(inputs_train)
labels_train = np.concatenate(labels_train)
net.set_train()
nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt,
bounds=(0.0, 1.0), eps=0.3)
nad.batch_defense(inputs_train, labels_train, batch_size=32, epochs=10)
# 7. get accuracy of test data on defensed model
net.set_train(False)
logits = net(Tensor(inputs)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of TEST data on defensed model is : %s', acc)
# 8. get accuracy of adv data on defensed model
logits = net(Tensor(adv_data)).asnumpy()
label_pred = np.argmax(logits, axis=1)
acc = np.mean(labels == label_pred)
LOGGER.info(TAG, 'accuracy of adv data on defensed model is : %s', acc)
if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_nad_method()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。