253 Star 936 Fork 114

MindSpore/mindarmour

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
lenet5_mnist_fuzzing.py 4.01 KB
一键复制 编辑 原始数据 按行查看 历史
ZhidanLiu 提交于 2021-08-26 15:21 . fix bug of bounds check in fuzzer
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from mindspore import Model
from mindspore import context
from mindspore import load_checkpoint, load_param_into_net
from mindarmour.fuzz_testing import Fuzzer
from mindarmour.fuzz_testing import KMultisectionNeuronCoverage
from mindarmour.utils import LogUtil
from examples.common.dataset.data_processing import generate_mnist_dataset
from examples.common.networks.lenet5.lenet5_net_for_fuzzing import LeNet5
LOGGER = LogUtil.get_instance()
TAG = 'Fuzz_test'
LOGGER.set_level('INFO')
def test_lenet_mnist_fuzzing():
# upload trained network
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_path)
load_param_into_net(net, load_dict)
model = Model(net)
mutate_config = [{'method': 'Blur',
'params': {'radius': [0.1, 0.2, 0.3],
'auto_param': [True, False]}},
{'method': 'Contrast',
'params': {'auto_param': [True]}},
{'method': 'Translate',
'params': {'auto_param': [True]}},
{'method': 'Brightness',
'params': {'auto_param': [True]}},
{'method': 'Noise',
'params': {'auto_param': [True]}},
{'method': 'Scale',
'params': {'auto_param': [True]}},
{'method': 'Shear',
'params': {'auto_param': [True]}},
{'method': 'FGSM',
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}
]
# get training data
data_list = "../common/dataset/MNIST/train"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
train_images = []
for data in ds.create_tuple_iterator(output_numpy=True):
images = data[0].astype(np.float32)
train_images.append(images)
train_images = np.concatenate(train_images, axis=0)
# fuzz test with original test data
# get test data
data_list = "../common/dataset/MNIST/test"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
test_images = []
test_labels = []
for data in ds.create_tuple_iterator(output_numpy=True):
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
test_images = np.concatenate(test_images, axis=0)
test_labels = np.concatenate(test_labels, axis=0)
initial_seeds = []
# make initial seeds
for img, label in zip(test_images, test_labels):
initial_seeds.append([img, label])
coverage = KMultisectionNeuronCoverage(model, train_images, segmented_num=100, incremental=True)
kmnc = coverage.get_metrics(test_images[:100])
print('KMNC of initial seeds is: ', kmnc)
initial_seeds = initial_seeds[:100]
model_fuzz_test = Fuzzer(model)
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, coverage, evaluate=True, max_iters=10,
mutate_num_per_seed=20)
if metrics:
for key in metrics:
print(key + ': ', metrics[key])
if __name__ == '__main__':
# device_target can be "CPU"GPU, "" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
test_lenet_mnist_fuzzing()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mindspore/mindarmour.git
git@gitee.com:mindspore/mindarmour.git
mindspore
mindarmour
mindarmour
r1.6

搜索帮助