代码拉取完成,页面将自动刷新
seed: 0
output_dir: './output' # path to save checkpoint/strategy
load_checkpoint: ''
src_strategy_path_or_dir: ''
auto_trans_ckpt: False # If true, auto transform load_checkpoint to load in distributed model
only_save_strategy: False
resume_training: False
use_parallel: False
run_mode: 'predict'
# trainer config
trainer:
type: CausalLanguageModelingTrainer
model_name: 'qwen2_7b'
# runner config
runner_config:
epochs: 5
batch_size: 1
sink_mode: True
sink_size: 2
runner_wrapper:
type: MFTrainOneStepCell
scale_sense:
type: DynamicLossScaleUpdateCell
loss_scale_value: 65536
scale_factor: 2
scale_window: 1000
use_clip_grad: True
# default parallel of device num = 8 for Atlas 800T A2
parallel_config:
data_parallel: 1
model_parallel: 1
pipeline_stage: 1
micro_batch_num: 1
vocab_emb_dp: True
gradient_aggregation_group: 4
# when model parallel is greater than 1, we can set micro_batch_interleave_num=2, that may accelerate the train process.
micro_batch_interleave_num: 1
model:
model_config:
type: LlamaConfig
batch_size: 1
seq_length: 8192
hidden_size: 4096
num_layers: 32
num_heads: 32
vocab_size: 151936
intermediate_size: 11008
qkv_has_bias: True
rms_norm_eps: 1.0e-6
theta: 1000000.0
emb_dropout_prob: 0.0
eos_token_id: [151645, 151643]
pad_token_id: 151643
bos_token_id: 151643
compute_dtype: "bfloat16"
layernorm_compute_type: "float32"
softmax_compute_type: "float32"
rotary_dtype: "bfloat16"
param_init_type: "float16"
use_past: True
use_flash_attention: True
block_size: 32
num_blocks: 1024
offset: 0
checkpoint_name_or_path: ""
repetition_penalty: 1.05
max_decode_length: 512
temperature: 0.7
top_k: 20
top_p: 0.8
do_sample: True
is_dynamic: True
qkv_concat: True
auto_map:
AutoTokenizer: [qwen1_5_tokenizer.Qwen2Tokenizer, null]
arch:
type: LlamaForCausalLM
processor:
return_tensors: ms
tokenizer:
model_max_length: 32768
vocab_file: "/path/vocab.json"
merges_file: "/path/merges.txt"
unk_token: "<|endoftext|>"
pad_token: "<|endoftext|>"
eos_token: "<|im_end|>"
chat_template: "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
type: Qwen2Tokenizer
type: Qwen2Processor
# mindspore context init config
context:
mode: 0 #0--Graph Mode; 1--Pynative Mode
device_target: "Ascend"
enable_graph_kernel: False
ascend_config:
precision_mode: "must_keep_origin_dtype"
max_call_depth: 10000
max_device_memory: "59GB"
save_graphs: False
save_graphs_path: "./graph"
device_id: 0
# parallel context config
parallel:
parallel_mode: 1 # 0-data parallel, 1-semi-auto parallel, 2-auto parallel, 3-hybrid parallel
gradients_mean: False
enable_alltoall: False
full_batch: True
search_mode: "sharding_propagation"
enable_parallel_optimizer: False
strategy_ckpt_config:
save_file: "./ckpt_strategy.ckpt"
only_trainable_params: False
parallel_optimizer_config:
gradient_accumulation_shard: False
parallel_optimizer_threshold: 64
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。