100 Star 1.3K Fork 910

GVPMindSpore/mindformers

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
finetune_glm3_6b_bf16.yaml 5.63 KB
一键复制 编辑 原始数据 按行查看 历史
seed: 0
run_mode: 'train'
output_dir: './output' # path to save checkpoint/strategy
load_checkpoint: ''
src_strategy_path_or_dir: ''
auto_trans_ckpt: False # If true, auto transform load_checkpoint to load in distributed model
only_save_strategy: False
resume_training: False
# ==== context config ====
context:
mode: 0 #0--Graph Mode; 1--Pynative Mode
device_target: "Ascend"
enable_graph_kernel: False
max_call_depth: 10000
max_device_memory: "59GB" # 59GB for Atlas 800T A2
save_graphs: False
device_id: 0
# aicc
remote_save_url: "Please input obs url on AICC platform."
# ==== model config ====
model:
model_config:
type: ChatGLM2Config
num_layers: 28
padded_vocab_size: 65024
hidden_size: 4096
ffn_hidden_size: 13696
kv_channels: 128
num_attention_heads: 32
seq_length: 2048
hidden_dropout: 0.0
attention_dropout: 0.0
layernorm_epsilon: 1e-5
rmsnorm: True
apply_residual_connection_post_layernorm: False
post_layer_norm: True
add_bias_linear: False
add_qkv_bias: True
bias_dropout_fusion: True
multi_query_attention: True
multi_query_group_num: 2
apply_query_key_layer_scaling: True
attention_softmax_in_fp32: True
fp32_residual_connection: False
quantization_bit: 0
pre_seq_len: None
prefix_projection: False
param_init_type: "bfloat16"
compute_dtype: "bfloat16"
layernorm_compute_type: "float32"
use_past: False
use_flash_attention: False # when use FlashAttention, seq_length should be multiple of 16
eos_token_id: 2
pad_token_id: 0
repetition_penalty: 1.0
max_decode_length: 256
checkpoint_name_or_path: "glm3_6b"
top_k: 1
top_p: 1
do_sample: True
arch:
type: ChatGLM2ForConditionalGeneration
trainer:
type: CausalLanguageModelingTrainer
model_name: 'glm3_6b'
# if True do, evaluate during the training process. if false, do nothing.
# note that the task trainer should support _evaluate_in_training function.
do_eval: False
eval_step_interval: 500
eval_epoch_interval: -1
metric:
type: ADGENMetric
processor:
return_tensors: ms
tokenizer:
type: ChatGLM3Tokenizer
bos_token: '<sop>'
eos_token: '<eop>'
end_token: '</s>'
mask_token: '[MASK]'
gmask_token: '[gMASK]'
pad_token: '<pad>'
unk_token: '<unk>'
# vocab_file: "/path/to/tokenizer.model"
type: GLMProcessor
# ==== dataset config ====
train_dataset: &train_dataset
data_loader:
type: ADGenDataLoader
dataset_dir: "/path/to/AdvertiseGen/train.json"
shuffle: True
phase: "train"
version: 3
origin_columns: ["content", "summary"]
tokenizer:
type: ChatGLM3Tokenizer
vocab_file: "/path/to/tokenizer.model"
input_columns: ["input_ids", "labels"]
max_source_length: 1024
max_target_length: 1023
ignore_pad_token_for_loss: True
num_parallel_workers: 8
python_multiprocessing: False
drop_remainder: True
batch_size: 8
repeat: 1
numa_enable: False
prefetch_size: 1
seed: 0
train_dataset_task:
type: KeyWordGenDataset
dataset_config: *train_dataset
eval_dataset: &eval_dataset
data_loader:
type: ADGenDataLoader
dataset_dir: "/path/to/AdvertiseGen/dev.json"
phase: "eval"
version: 2
shuffle: False
origin_columns: ["content", "summary"]
tokenizer:
type: ChatGLM3Tokenizer
vocab_file: "/path/to/tokenizer.model"
max_source_length: 256
max_target_length: 256
ignore_pad_token_for_loss: True
input_columns: ["input_ids", "labels"]
num_parallel_workers: 8
python_multiprocessing: False
drop_remainder: True
batch_size: 8
repeat: 1
numa_enable: False
prefetch_size: 1
seed: 0
eval_dataset_task:
type: KeyWordGenDataset
dataset_config: *eval_dataset
# ==== runner config ====
runner_config:
epochs: 1
batch_size: 4
sink_mode: True
sink_size: 1
runner_wrapper:
type: MFTrainOneStepCell
scale_sense:
type: DynamicLossScaleUpdateCell
loss_scale_value: 65536
scale_factor: 2
scale_window: 1000
use_clip_grad: True
# lr schedule
lr_schedule:
type: polynomial
learning_rate: 1.e-4
lr_end: 1.e-6
warmup_steps: 0
total_steps: -1 # -1 means it will load the total steps of the dataset
layer_scale: False
layer_decay: 0.65
# optimizer
optimizer:
type: FP32StateAdamWeightDecay
beta1: 0.9
beta2: 0.95
eps: 1.e-8
weight_decay: 0.1
lr_scale: False
lr_scale_factor: 256
# parallel config
use_parallel: True
parallel:
parallel_mode: 1 # 0-dataset, 1-semi, 2-auto, 3-hybrid
gradients_mean: False
loss_repeated_mean: True
enable_alltoall: False
full_batch: True
search_mode: "sharding_propagation"
enable_parallel_optimizer: True # optimizer shard
strategy_ckpt_config:
save_file: "./ckpt_strategy.ckpt"
parallel_config:
data_parallel: 8
model_parallel: 1
pipeline_stage: 1
expert_parallel: 1
micro_batch_num: 1
vocab_emb_dp: True
gradient_aggregation_group: 4
micro_batch_interleave_num: 1
# moe
moe_config:
expert_num: 1
capacity_factor: 1.05
aux_loss_factor: 0.05
num_experts_chosen: 1
# recompute
recompute_config:
recompute: True
parallel_optimizer_comm_recompute: False
mp_comm_recompute: True
recompute_slice_activation: True
# autotune
auto_tune: False
filepath_prefix: './autotune'
autotune_per_step: 10
# profile
profile: False
profile_start_step: 1
profile_stop_step: 10
init_start_profile: True
profile_communication: True
profile_memory: True
# callbacks
callbacks:
- type: MFLossMonitor
- type: CheckpointMonitor
prefix: "glm3-6b"
save_checkpoint_steps: 1000
keep_checkpoint_max: 1
integrated_save: False
async_save: False
- type: ObsMonitor
keep_last: False
eval_callbacks:
- type: ObsMonitor
keep_last: False
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mindspore/mindformers.git
git@gitee.com:mindspore/mindformers.git
mindspore
mindformers
mindformers
r1.3.0

搜索帮助