84 Star 1.1K Fork 826

GVPMindSpore/mindformers

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
finetune_internlm2_7b.yaml 5.07 KB
一键复制 编辑 原始数据 按行查看 历史
sunyuxuan 提交于 4个月前 . set default qkv_concat False
seed: 0
output_dir: './output' # path to save checkpoint/strategy
load_checkpoint: './internlm2.ckpt'
src_strategy_path_or_dir: ''
auto_trans_ckpt: False # If true, auto transform load_checkpoint to load in distributed model
only_save_strategy: False
resume_training: False
use_parallel: True
run_mode: 'finetune'
# trainer config
trainer:
type: CausalLanguageModelingTrainer
model_name: 'internlm2_7b'
# runner config
runner_config:
epochs: 2
batch_size: 2
sink_mode: True
sink_size: 1
gradient_accumulation_steps: 1
# optimizer
optimizer:
type: AdamW
betas: [0.9, 0.95]
eps: 1.e-8
weight_decay: 0.01
# lr schedule
lr_schedule:
type: CosineWithWarmUpLR
learning_rate: 2.e-5
warmup_ratio: 0.025
total_steps: -1 # -1 means it will load the total steps of the dataset
# dataset
train_dataset: &train_dataset
data_loader:
type: MindDataset
dataset_dir: ""
shuffle: True
input_columns: ["input_ids", "labels"] # "input_ids", "labels" , labels are used in instruction finetune.
num_parallel_workers: 8
python_multiprocessing: False
drop_remainder: True
repeat: 1
numa_enable: False
prefetch_size: 1
train_dataset_task:
type: CausalLanguageModelDataset
dataset_config: *train_dataset
# if True, do evaluate during the training process. if false, do nothing.
# note that the task trainer should support _evaluate_in_training function.
do_eval: False
eval_step_interval: -1 # num of step intervals between each eval, -1 means no step end eval.
eval_epoch_interval: 50000 # num of epoch intervals between each eval, 1 means eval on every epoch end.
# eval dataset
eval_dataset: &eval_dataset
data_loader:
type: MindDataset
dataset_dir: ""
shuffle: False
input_columns: ["input_ids"]
num_parallel_workers: 8
python_multiprocessing: False
drop_remainder: False
repeat: 1
numa_enable: False
prefetch_size: 1
eval_dataset_task:
type: CausalLanguageModelDataset
dataset_config: *eval_dataset
# default parallel of device num = 8 for Atlas 800T A2
parallel_config:
data_parallel: 8
model_parallel: 1
pipeline_stage: 1
micro_batch_num: 1
vocab_emb_dp: False
gradient_aggregation_group: 4
# when model parallel is greater than 1, we can set micro_batch_interleave_num=2, that may accelerate the train process.
micro_batch_interleave_num: 1
# recompute config
recompute_config:
recompute: False
parallel_optimizer_comm_recompute: False
mp_comm_recompute: False
recompute_slice_activation: False
# callbacks
callbacks:
- type: MFLossMonitor
- type: CheckpointMonitor
prefix: "internlm2_7b"
save_checkpoint_steps: 500
keep_checkpoint_max: 1
integrated_save: False
async_save: False
- type: ObsMonitor
# mindspore context init config
context:
mode: 0 #0--Graph Mode; 1--Pynative Mode
device_target: "Ascend"
enable_graph_kernel: False
max_call_depth: 10000
max_device_memory: "59GB"
save_graphs: False
save_graphs_path: "./graph"
device_id: 0
jit_config:
jit_level: "O2"
# parallel context config
parallel:
parallel_mode: 1 # 0-dataset, 1-semi, 2-auto, 3-hybrid
gradients_mean: False
enable_alltoall: False
full_batch: True
search_mode: "sharding_propagation"
enable_parallel_optimizer: True
strategy_ckpt_save_file: "./ckpt_strategy.ckpt"
parallel_optimizer_config:
gradient_accumulation_shard: False
parallel_optimizer_threshold: 64
# model config
model:
model_config:
type: InternLM2Config
batch_size: 1 # add for increase predict
seq_length: 2048
hidden_size: 4096
num_layers: 32
num_heads: 32
n_kv_heads: 8
vocab_size: 92544
multiple_of: 256
rms_norm_eps: 1.0e-5
intermediate_size: 14336
theta: 1000000
bos_token_id: 1
eos_token_id: 2
pad_token_id: 2
ignore_token_id: -100
compute_dtype: "bfloat16"
layernorm_compute_type: "float32"
softmax_compute_type: "float32"
rotary_dtype: "float32"
param_init_type: "float32"
qkv_concat: False
has_bias: False
use_past: False
scaling_factor: 1.0
extend_method: "None"
use_flash_attention: True
offset: 0
checkpoint_name_or_path: "internlm2_7b"
repetition_penalty: 1.00
max_decode_length: 512
top_k: 3
top_p: 0.8
do_sample: False
arch:
type: InternLM2ForCausalLM
processor:
return_tensors: ms
tokenizer:
unk_token: '<unk>'
bos_token: '<s>'
eos_token: '</s>'
pad_token: '</s>'
type: InternLM2Tokenizer
vocab_file: './tokenizer.model'
type: LlamaProcessor
# metric
metric:
type: PerplexityMetric
# wrapper cell config
runner_wrapper:
type: MFTrainOneStepCell
scale_sense:
type: DynamicLossScaleUpdateCell
loss_scale_value: 16384
scale_factor: 2
scale_window: 1000
use_clip_grad: True
eval_callbacks:
- type: ObsMonitor
auto_tune: False
filepath_prefix: './autotune'
autotune_per_step: 10
profile: False
profile_start_step: 1
profile_stop_step: 10
init_start_profile: False
profile_communication: False
profile_memory: True
layer_scale: False
layer_decay: 0.65
lr_scale_factor: 256
# aicc
remote_save_url: "Please input obs url on AICC platform."
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mindspore/mindformers.git
git@gitee.com:mindspore/mindformers.git
mindspore
mindformers
mindformers
r1.3.0

搜索帮助