代码拉取完成,页面将自动刷新
seed: 0
output_dir: './output'
load_checkpoint: ""
src_strategy_path_or_dir: ''
auto_trans_ckpt: False
only_save_strategy: False
resume_training: False
run_mode: 'finetune'
# trainer config
trainer:
type: CausalLanguageModelingTrainer
model_name: 'qwen2-57b-a14b'
do_eval: false
eval_step_interval: -1
eval_epoch_interval: 1
# runner config
runner_config:
epochs: 2
batch_size: 1
sink_mode: True
sink_size: 1
# optimizer
optimizer:
type: AdamW
betas: [0.9,0.95]
eps: 1.e-8
weight_decay: 0.01
# moe
moe_config:
expert_num: 64
capacity_factor: 1.1
aux_loss_factor: 0.001
num_experts_chosen: 8
routing_policy: "TopkRouterV2"
enable_sdrop: True
router_dense_type: "float32"
shared_expert_num: 8.0
use_shared_expert_gating: True
use_fused_ops_topkrouter: True
norm_topk_prob: False
# lr sechdule
lr_schedule:
type: CosineWithWarmUpLR
learning_rate: 1.e-5
lr_end: 1.e-5
warmup_ratio: 0.0
total_steps: -1
# dataset
train_dataset: &train_dataset
data_loader:
type: MindDataset
dataset_dir: ""
shuffle: False
input_columns: ["input_ids", "target_ids", "attention_mask"]
num_parallel_workers: 8
python_multiprocessing: False
drop_remainder: True
batch_size: 4
repeat: 1
numa_enable: False
prefetch_size: 1
train_dataset_task:
type: CausalLanguageModelDataset
dataset_config: *train_dataset
# eval dataset
eval_dataset: &eval_dataset
data_loader:
type: MindDataset
dataset_dir: ""
shuffle: False
input_columns: ["input_ids"]
num_parallel_workers: 8
python_multiprocessing: False
drop_remainder: False
repeat: 1
numa_enable: False
prefetch_size: 1
eval_dataset_task:
type: CausalLanguageModelDataset
dataset_config: *eval_dataset
use_parallel: True
# parallel context config
parallel:
parallel_mode: 1 # 0-data parallel, 1-semi-auto parallel, 2-auto parallel, 3-hybrid parallel
gradients_mean: False
enable_alltoall: True
full_batch: True
search_mode: "sharding_propagation"
enable_parallel_optimizer: True
strategy_ckpt_save_file: "./ckpt_strategy.ckpt"
parallel_optimizer_config:
gradient_accumulation_shard: False
parallel_optimizer_threshold: 64
# default parallel of device num = 8 910A
parallel_config:
data_parallel: 4
expert_parallel: 4
model_parallel: 4
pipeline_stage: 2
use_seq_parallel: True
micro_batch_num: 8
vocab_emb_dp: False
gradient_aggregation_group: 4
# when model parallel is greater than 1, we can set micro_batch_interleave_num=2, that may accelerate the train process.
micro_batch_interleave_num: 1
# recompute config
recompute_config:
recompute: True
select_recompute: False
parallel_optimizer_comm_recompute: False
mp_comm_recompute: True
recompute_slice_activation: True
# callbacks
callbacks:
- type: MFLossMonitor
- type: ObsMonitor
context:
jit_config:
jit_level: "O1"
memory_optimize_level: "O1"
mode: 0 #0--Graph Mode; 1--Pynative Mode
device_target: "Ascend"
enable_graph_kernel: False
max_call_depth: 10000
max_device_memory: "58GB"
save_graphs: False
save_graphs_path: "./graph"
device_id: 0
# model config
model:
model_config:
type: LlamaConfig
batch_size: 1 # add for increase predict
seq_length: 32768
max_position_embedding: 32768
hidden_size: 3584
intermediate_size: 2560
theta: 1000000
num_layers: 28
num_heads: 28
vocab_size: 151936
n_kv_heads: 4
rms_norm_eps: 1.0e-6
bos_token_id: 151643
pad_token_id: 151643
eos_token_id: [151645, 151643]
ignore_token_id: -100
qkv_has_bias: True
compute_dtype: "bfloat16"
layernorm_compute_type: "float32"
softmax_compute_type: "float16"
rotary_dtype: "float32"
param_init_type: "float32"
use_past: False
extend_method: "None" # support "None", "PI", "NTK"
use_flash_attention: True
use_past_shard: False
checkpoint_name_or_path: ""
repetition_penalty: 1
max_decode_length: 512
top_k: 3
top_p: 1
do_sample: False
is_dynamic: False
use_attn_mask_compression: True
arch:
type: LlamaForCausalLM
processor:
return_tensors: ms
tokenizer:
model_max_length: 32768
vocab_file: ""
merges_file: ""
unk_token: "<|endoftext|>"
eos_token: "<|endoftext|>"
pad_token: "<|endoftext|>"
type: Qwen2Tokenizer
type: Qwen2Processor
# metric
metric:
type: PerplexityMetric
# wrapper cell config
runner_wrapper:
type: MFTrainOneStepCell
scale_sense:
type: DynamicLossScaleUpdateCell
loss_scale_value: 4096
scale_factor: 2
scale_window: 1000
use_clip_grad: True
eval_callbacks:
- type: ObsMonitor
auto_tune: False
filepath_prefix: './autotune'
autotune_per_step: 10
profile: False
profile_start_step: 2
profile_stop_step: 4
init_start_profile: False
profile_communication: False
profile_memory: True
layer_scale: False
layer_decay: 0.65
lr_scale_factor: 256
# aicc
remote_save_url: ""
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。