代码拉取完成,页面将自动刷新
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# -*- coding: utf-8 -*-
"""derivatives"""
from mindspore import nn
from mindspore import ops
from sciai.common.train_cell import to_tuple
from sciai.utils.check_utils import _recursive_type_check
class _Grad(nn.Cell):
r"""
The derivative net of given net according to given output index and input index(es). All output indices will be
used for differentiation and summed, and all input index(es) will be differentiated separately.
Args:
net (Cell): Net to be auto-differentiated.
output_index (int): Output index starting from 0. Default: 0.
input_index (Union[int, tuple[int]]): Input index(es) starting from 0, and only forward indexes are allowed.
If -1, all specified inputs would be differentiated respectively. Default: -1.
Inputs:
- **\*inputs** (tuple[Tensor]) - The inputs of the original network.
Returns:
Union(Tensor, tuple[Tensor]), The outputs of the fist order derivative net.
Raises:
TypeError: If out_index is not int.
TypeError: If input_index is neither int nor tuple/list of int.
TypeError: If output of the nerwork are neither Tensor, not tuple of Tensors.
TypeError: If input_index type is neither int nor tuple of int.
IndexError: If input_index or output_index is out of range.
Example:
>>> import mindspore as ms
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super().__init__()
>>> def construct(self, x, y):
>>> out1 = x + y
>>> out2 = 2 * x + y
>>> out3 = x * x + 4 * y * y + 3 * y
>>> f, g, h = out1.sum(), out2.sum(), out3.sum()
>>> return f, g, h
>>> net = Net() # net: f, g, h = net(x, y)
>>> x = ops.ones((2, 3), ms.float32)
>>> y = ops.ones((2, 3), ms.float32)
>>> first_grad_net = grad(net, 2, 1) # ∂h/∂y, since (f, g, h)[2] == h, (x, y)[1] == y
>>> second_grad_net = grad(first_grad_net, 0, 1) # ∂2h/∂y2, since (∂h)[0] == ∂h, (x, y)[1] == y
>>> print(first_grad_net(x, y))
[[11. 11. 11.]
[11. 11. 11.]]
>>> print(second_grad_net(x, y))
[[8. 8. 8.]
[8. 8. 8.]]
>>> class Net2(nn.Cell):
>>> def __init__(self):
>>> super().__init__()
>>> def construct(self, x, y):
>>> out1 = 2 * x + y
>>> out2 = x * x + 4 * x * y + 3 * y
>>> f, g = out1.sum(), out2.sum()
>>> return f, g
>>> net = Net2() # output: (f, g), input:(x, y)
>>> x = ops.ones((2, 3), ms.float32)
>>> y = ops.ones((2, 3), ms.float32)
>>> first_grad_net = grad(net, 1, (0, 1)) # (∂g/∂x, ∂g/∂y), since (f, g)[1] == g
>>> second_grad_net = grad(first_grad_net, 0, (0, 1)) # (∂2g/∂x2, ∂2g/∂x∂y), since (∂g/∂x, ∂g/∂y)[0] == ∂g/∂x
>>> print(first_grad_net(x, y))
(Tensor(shape=[2, 3], dtype=Float32, value=
[[ 6.00000000e+00, 6.00000000e+00, 6.00000000e+00],
[ 6.00000000e+00, 6.00000000e+00, 6.00000000e+00]]), Tensor(shape=[2, 3], dtype=Float32, value=
[[ 7.00000000e+00, 7.00000000e+00, 7.00000000e+00],
[ 7.00000000e+00, 7.00000000e+00, 7.00000000e+00]]))
>>> print(second_grad_net(x, y))
(Tensor(shape=[2, 3], dtype=Float32, value=
[[ 2.00000000e+00, 2.00000000e+00, 2.00000000e+00],
[ 2.00000000e+00, 2.00000000e+00, 2.00000000e+00]]), Tensor(shape=[2, 3], dtype=Float32, value=
[[ 4.00000000e+00, 4.00000000e+00, 4.00000000e+00],
[ 4.00000000e+00, 4.00000000e+00, 4.00000000e+00]]))
"""
def __init__(self, net, output_index=0, input_index=-1):
super().__init__()
if not isinstance(output_index, int):
raise TypeError(f"output_index type is {type(output_index)}, which can only be int.")
if not _recursive_type_check(input_index, int):
raise TypeError(f"input_index is {output_index}, which can only be None, int or tuple/list of int.")
self.net = net
self.grad = ops.GradOperation(get_all=True, sens_param=True)
self.grad_net = self.grad(self.net)
self.output_index = output_index
self.input_index = input_index
if isinstance(self.input_index, int):
self.input_index = to_tuple(self.input_index)
self.cast = ops.Cast()
def construct(self, *inputs):
"""construct"""
outputs = self.net(*inputs)
out_tup = to_tuple(outputs)
data_type = out_tup[0].dtype
sens = [ops.zeros_like(output) for output in out_tup]
sens[self.output_index] = ops.ones_like(out_tup[self.output_index])
sens_tuple = tuple([self.cast(_, data_type) for _ in sens])
first_grad = self.grad_net(*inputs, sens_tuple if len(sens_tuple) > 1 else sens_tuple[0])
if len(self.input_index) == 1:
if self.input_index == (-1,):
return first_grad
return first_grad[self.input_index[0]]
return tuple(first_grad[ind] for ind in self.input_index)
def grad_func(self, *inputs):
def currying(sens):
return self.grad_net(*inputs, sens if len(sens) > 1 else sens[0])
return currying
def grad(net, output_index=0, input_index=-1):
r"""
Gradient function. Refer to _Grad.
Args:
net (Cell): Net to be auto-differentiated.
output_index (int): Output index starting from 0. Default: 0.
input_index (Union(int, tuple[int])): Input index(es) starting from 0, and only forward indexes are allowed.
If -1, all specified inputs would be differentiated respectively. Default: -1.
Inputs:
- **\*inputs** (tuple[Tensor]) - The inputs of the original network.
Outputs:
Union(Tensor, tuple[Tensor]), The outputs of the fist order derivative net.
Raises:
TypeError: If out_index is not int.
TypeError: If input_index is neither int nor tuple/list of int.
TypeError: If output of the network are neither Tensor, not tuple of Tensors.
TypeError: If input_index type is neither int nor tuple of int.
IndexError: If input_index or output_index is out of range.
"""
return _Grad(net, output_index=output_index, input_index=input_index)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。