Fetch the repository succeeded.
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
######################## eval lenet example ########################
Apply quantization-aware-training algorithms on LeNet5 model and eval accuracy according to model file:
"""
import os
from src.model_utils.config import config
from src.dataset import create_dataset
from src.lenet import LeNet5
import mindspore.nn as nn
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train import Model
from mindspore.train.metrics import Accuracy
from algorithm import create_simqat
def eval_lenet():
print('eval with config: ', config)
if config.device_target != "GPU":
raise NotImplementedError("SimQAT only support running on GPU now!")
if config.mode_name == "GRAPH":
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
else:
context.set_context(mode=context.PYNATIVE_MODE, device_target=config.device_target)
network = LeNet5(config.num_classes)
# apply golden stick algorithm on LeNet5 model
algo = create_simqat()
network = algo.apply(network)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
model = Model(network, net_loss, metrics={"Accuracy": Accuracy()})
print("============== Starting Testing ==============")
param_dict = load_checkpoint(config.checkpoint_file_path)
load_param_into_net(network, param_dict)
ds_eval = create_dataset(os.path.join(config.data_path), config.batch_size)
if ds_eval.get_dataset_size() == 0:
raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
acc = model.eval(ds_eval)
print("============== {} ==============".format(acc))
if __name__ == "__main__":
eval_lenet()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。