代码拉取完成,页面将自动刷新
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import datetime
import glob
import os
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore.nn.optim import Momentum, thor, LARS
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.train_thor import ConvertModelUtils
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.communication.management import init, get_rank
from mindspore.common import set_seed
from mindspore.parallel import set_algo_parameters
import mindspore.nn as nn
import mindspore.log as logger
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
from src.CrossEntropySmooth import CrossEntropySmooth
from src.eval_callback import EvalCallBack
from src.metric import DistAccuracy, ClassifyCorrectCell
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_rank_id, get_device_num
from src.resnet import conv_variance_scaling_initializer
set_seed(1)
class LossCallBack(LossMonitor):
"""
Monitor the loss in training.
If the loss in NAN or INF terminating training.
"""
def __init__(self, has_trained_epoch=0):
super(LossCallBack, self).__init__()
self.has_trained_epoch = has_trained_epoch
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
cb_params.cur_epoch_num, cur_step_in_epoch))
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num + int(self.has_trained_epoch),
cur_step_in_epoch, loss), flush=True)
if config.net_name in ("resnet18", "resnet34", "resnet50", "resnet152"):
if config.net_name == "resnet18":
from src.resnet import resnet18 as resnet
elif config.net_name == "resnet34":
from src.resnet import resnet34 as resnet
elif config.net_name == "resnet50":
from src.resnet import resnet50 as resnet
else:
from src.resnet import resnet152 as resnet
if config.dataset == "cifar10":
from src.dataset import create_dataset1 as create_dataset
else:
if config.mode_name == "GRAPH":
from src.dataset import create_dataset2 as create_dataset
else:
from src.dataset import create_dataset_pynative as create_dataset
elif config.net_name == "resnet101":
from src.resnet import resnet101 as resnet
from src.dataset import create_dataset3 as create_dataset
else:
from src.resnet import se_resnet50 as resnet
from src.dataset import create_dataset4 as create_dataset
def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
"""remove useless parameters according to filter_list"""
for key in list(origin_dict.keys()):
for name in param_filter:
if name in key:
print("Delete parameter from checkpoint: ", key)
del origin_dict[key]
break
def apply_eval(eval_param):
eval_model = eval_param["model"]
eval_ds = eval_param["dataset"]
metrics_name = eval_param["metrics_name"]
res = eval_model.eval(eval_ds)
return res[metrics_name]
def set_graph_kernel_context(run_platform, net_name):
if run_platform == "GPU" and net_name == "resnet101":
ms.set_context(enable_graph_kernel=True)
ms.set_context(graph_kernel_flags="--enable_parallel_fusion --enable_expand_ops=Conv2D")
def set_parameter():
"""set_parameter"""
target = config.device_target
if target == "CPU":
config.run_distribute = False
# init context
if config.mode_name == 'GRAPH':
if target == "Ascend":
rank_save_graphs_path = os.path.join(config.save_graphs_path, "soma", str(os.getenv('DEVICE_ID')))
ms.set_context(mode=ms.GRAPH_MODE, device_target=target, save_graphs=config.save_graphs,
save_graphs_path=rank_save_graphs_path)
else:
ms.set_context(mode=ms.GRAPH_MODE, device_target=target, save_graphs=config.save_graphs)
set_graph_kernel_context(target, config.net_name)
else:
ms.set_context(mode=ms.PYNATIVE_MODE, device_target=target, save_graphs=False)
if config.parameter_server:
context.set_ps_context(enable_ps=True)
if config.run_distribute:
if target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
ms.set_context(device_id=device_id)
ms.set_auto_parallel_context(device_num=config.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
set_algo_parameters(elementwise_op_strategy_follow=True)
if config.net_name == "resnet50" or config.net_name == "se-resnet50":
if config.boost_mode not in ["O1", "O2"]:
ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config)
elif config.net_name in ["resnet101", "resnet152"]:
ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config)
init()
# GPU target
else:
init()
ms.set_auto_parallel_context(device_num=get_device_num(),
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
if config.net_name == "resnet50":
ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config)
def load_pre_trained_checkpoint():
"""
Load checkpoint according to pre_trained path.
"""
param_dict = None
if config.pre_trained:
if os.path.isdir(config.pre_trained):
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path, "ckpt_0")
ckpt_pattern = os.path.join(ckpt_save_dir, "*.ckpt")
ckpt_files = glob.glob(ckpt_pattern)
if not ckpt_files:
logger.warning(f"There is no ckpt file in {ckpt_save_dir}, "
f"pre_trained is unsupported.")
else:
ckpt_files.sort(key=os.path.getmtime, reverse=True)
time_stamp = datetime.datetime.now()
print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')}"
f" pre trained ckpt model {ckpt_files[0]} loading",
flush=True)
param_dict = ms.load_checkpoint(ckpt_files[0])
elif os.path.isfile(config.pre_trained):
param_dict = ms.load_checkpoint(config.pre_trained)
else:
print(f"Invalid pre_trained {config.pre_trained} parameter.")
return param_dict
def init_weight(net, param_dict):
"""init_weight"""
if config.pre_trained:
if param_dict:
if param_dict.get("epoch_num") and param_dict.get("step_num"):
config.has_trained_epoch = int(param_dict["epoch_num"].data.asnumpy())
config.has_trained_step = int(param_dict["step_num"].data.asnumpy())
else:
config.has_trained_epoch = 0
config.has_trained_step = 0
if config.filter_weight:
filter_list = [x.name for x in net.end_point.get_parameters()]
filter_checkpoint_parameter_by_list(param_dict, filter_list)
ms.load_param_into_net(net, param_dict)
else:
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d):
if config.conv_init == "XavierUniform":
cell.weight.set_data(ms.common.initializer.initializer(ms.common.initializer.XavierUniform(),
cell.weight.shape,
cell.weight.dtype))
elif config.conv_init == "TruncatedNormal":
weight = conv_variance_scaling_initializer(cell.in_channels,
cell.out_channels,
cell.kernel_size[0])
cell.weight.set_data(weight)
if isinstance(cell, nn.Dense):
if config.dense_init == "TruncatedNormal":
cell.weight.set_data(ms.common.initializer.initializer(ms.common.initializer.TruncatedNormal(),
cell.weight.shape,
cell.weight.dtype))
elif config.dense_init == "RandomNormal":
in_channel = cell.in_channels
out_channel = cell.out_channels
weight = np.random.normal(loc=0, scale=0.01, size=out_channel * in_channel)
weight = Tensor(np.reshape(weight, (out_channel, in_channel)), dtype=cell.weight.dtype)
cell.weight.set_data(weight)
def init_lr(step_size):
"""init lr"""
if config.optimizer == "Thor":
from src.lr_generator import get_thor_lr
lr = get_thor_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
else:
if config.net_name in ("resnet18", "resnet34", "resnet50", "resnet152", "se-resnet50"):
lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode)
else:
lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
config.pretrain_epoch_size * step_size)
return lr
def init_loss_scale():
if config.dataset == "imagenet2012":
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
else:
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
return loss
def init_group_params(net):
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
{'params': no_decayed_params},
{'order_params': net.trainable_params()}]
return group_params
def run_eval(target, model, ckpt_save_dir, cb):
"""run_eval"""
if config.run_eval:
if config.eval_dataset_path is None or (not os.path.isdir(config.eval_dataset_path)):
raise ValueError("{} is not a existing path.".format(config.eval_dataset_path))
eval_dataset = create_dataset(dataset_path=config.eval_dataset_path, do_train=False,
batch_size=config.batch_size, train_image_size=config.train_image_size,
eval_image_size=config.eval_image_size,
target=target, enable_cache=config.enable_cache,
cache_session_id=config.cache_session_id)
eval_param_dict = {"model": model, "dataset": eval_dataset, "metrics_name": "acc"}
eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=config.eval_interval,
eval_start_epoch=config.eval_start_epoch, save_best_ckpt=config.save_best_ckpt,
ckpt_directory=ckpt_save_dir, besk_ckpt_name="best_acc.ckpt",
metrics_name="acc")
cb += [eval_cb]
def set_save_ckpt_dir():
"""set save ckpt dir"""
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path)
if config.enable_modelarts and config.run_distribute:
ckpt_save_dir = ckpt_save_dir + "ckpt_" + str(get_rank_id()) + "/"
else:
if config.run_distribute:
ckpt_save_dir = ckpt_save_dir + "ckpt_" + str(get_rank()) + "/"
return ckpt_save_dir
@moxing_wrapper()
def train_net():
"""train net"""
target = config.device_target
set_parameter()
ckpt_param_dict = load_pre_trained_checkpoint()
dataset = create_dataset(dataset_path=config.data_path, do_train=True,
batch_size=config.batch_size, train_image_size=config.train_image_size,
eval_image_size=config.eval_image_size, target=target,
distribute=config.run_distribute)
step_size = dataset.get_dataset_size()
net = resnet(class_num=config.class_num)
if config.parameter_server:
net.set_param_ps()
init_weight(net=net, param_dict=ckpt_param_dict)
lr = Tensor(init_lr(step_size=step_size))
# define opt
group_params = init_group_params(net)
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
if config.optimizer == "LARS":
opt = LARS(opt, epsilon=config.lars_epsilon, coefficient=config.lars_coefficient,
lars_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name)
loss = init_loss_scale()
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
dist_eval_network = ClassifyCorrectCell(net) if config.run_distribute else None
metrics = {"acc"}
if config.run_distribute:
metrics = {'acc': DistAccuracy(batch_size=config.batch_size, device_num=config.device_num)}
if (config.net_name not in ("resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "se-resnet50")) or \
config.parameter_server or target == "CPU":
## fp32 training
model = Model(net, loss_fn=loss, optimizer=opt, metrics=metrics, eval_network=dist_eval_network)
else:
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=metrics,
amp_level="O2", boost_level=config.boost_mode, keep_batchnorm_fp32=False,
eval_network=dist_eval_network)
if config.optimizer == "Thor" and config.dataset == "imagenet2012":
from src.lr_generator import get_thor_damping
damping = get_thor_damping(0, config.damping_init, config.damping_decay, 70, step_size)
split_indices = [26, 53]
opt = thor(net, lr, Tensor(damping), config.momentum, config.weight_decay, config.loss_scale,
config.batch_size, split_indices=split_indices, frequency=config.frequency)
model = ConvertModelUtils().convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=opt,
loss_scale_manager=loss_scale, metrics={'acc'},
amp_level="O2", keep_batchnorm_fp32=False)
config.run_eval = False
logger.warning("Thor optimizer not support evaluation while training.")
# define callbacks
time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossCallBack(config.has_trained_epoch)
cb = [time_cb, loss_cb]
ckpt_save_dir = set_save_ckpt_dir()
if config.save_checkpoint:
ckpt_append_info = [{"epoch_num": config.has_trained_epoch, "step_num": config.has_trained_step}]
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max,
append_info=ckpt_append_info)
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
run_eval(target, model, ckpt_save_dir, cb)
# train model
if config.net_name == "se-resnet50":
config.epoch_size = config.train_epoch_size
dataset_sink_mode = (not config.parameter_server) and target != "CPU"
config.pretrain_epoch_size = config.has_trained_epoch
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)
if config.run_eval and config.enable_cache:
print("Remember to shut down the cache server via \"cache_admin --stop\"")
if __name__ == '__main__':
train_net()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。