106 Star 842 Fork 1.4K

MindSpore/models

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
train.py 17.70 KB
一键复制 编辑 原始数据 按行查看 历史
anzhengqi 提交于 2022-08-12 16:10 . modify resnet scripts
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import datetime
import glob
import os
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore.train.train_thor import ConvertModelUtils
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.communication.management import init, get_rank
from mindspore.parallel import set_algo_parameters
import mindspore.log as logger
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
from src.CrossEntropySmooth import CrossEntropySmooth
from src.eval_callback import EvalCallBack
from src.metric import DistAccuracy, ClassifyCorrectCell
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_rank_id, get_device_num
from src.resnet import conv_variance_scaling_initializer
ms.set_seed(1)
class LossCallBack(LossMonitor):
"""
Monitor the loss in training.
If the loss in NAN or INF terminating training.
"""
def __init__(self, has_trained_epoch=0):
super(LossCallBack, self).__init__()
self.has_trained_epoch = has_trained_epoch
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], ms.Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, ms.Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
cb_params.cur_epoch_num, cur_step_in_epoch))
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
# pylint: disable=line-too-long
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num + int(self.has_trained_epoch),
cur_step_in_epoch, loss), flush=True)
if config.net_name in ("resnet18", "resnet34", "resnet50", "resnet152"):
if config.net_name == "resnet18":
from src.resnet import resnet18 as resnet
elif config.net_name == "resnet34":
from src.resnet import resnet34 as resnet
elif config.net_name == "resnet50":
from src.resnet import resnet50 as resnet
else:
from src.resnet import resnet152 as resnet
if config.dataset == "cifar10":
from src.dataset import create_dataset1 as create_dataset
else:
if config.mode_name == "GRAPH":
from src.dataset import create_dataset2 as create_dataset
else:
from src.dataset import create_dataset_pynative as create_dataset
elif config.net_name == "resnet101":
from src.resnet import resnet101 as resnet
from src.dataset import create_dataset3 as create_dataset
else:
from src.resnet import se_resnet50 as resnet
from src.dataset import create_dataset4 as create_dataset
def filter_checkpoint_parameter_by_list(origin_dict, param_filter):
"""remove useless parameters according to filter_list"""
for key in list(origin_dict.keys()):
for name in param_filter:
if name in key:
print("Delete parameter from checkpoint: ", key)
del origin_dict[key]
break
def apply_eval(eval_param):
eval_model = eval_param["model"]
eval_ds = eval_param["dataset"]
metrics_name = eval_param["metrics_name"]
res = eval_model.eval(eval_ds)
return res[metrics_name]
def set_graph_kernel_context(run_platform, net_name):
if run_platform == "GPU" and net_name == "resnet101":
ms.set_context(enable_graph_kernel=True)
ms.set_context(graph_kernel_flags="--enable_parallel_fusion --enable_expand_ops=Conv2D")
def set_parameter():
"""set_parameter"""
target = config.device_target
if target == "CPU":
config.run_distribute = False
# init context
if config.mode_name == 'GRAPH':
if target == "Ascend":
rank_save_graphs_path = os.path.join(config.save_graphs_path, "soma", str(os.getenv('DEVICE_ID')))
ms.set_context(mode=ms.GRAPH_MODE, device_target=target, save_graphs=config.save_graphs,
save_graphs_path=rank_save_graphs_path)
else:
ms.set_context(mode=ms.GRAPH_MODE, device_target=target, save_graphs=config.save_graphs)
set_graph_kernel_context(target, config.net_name)
else:
ms.set_context(mode=ms.PYNATIVE_MODE, device_target=target, save_graphs=False)
if config.parameter_server:
ms.set_ps_context(enable_ps=True)
if config.run_distribute:
if target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
ms.set_context(device_id=device_id)
ms.set_auto_parallel_context(device_num=config.device_num, parallel_mode=ms.ParallelMode.DATA_PARALLEL,
gradients_mean=True)
set_algo_parameters(elementwise_op_strategy_follow=True)
if config.net_name == "resnet50" or config.net_name == "se-resnet50":
if config.boost_mode not in ["O1", "O2"]:
ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config)
elif config.net_name in ["resnet101", "resnet152"]:
ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config)
init()
# GPU target
else:
init()
ms.set_auto_parallel_context(device_num=get_device_num(),
parallel_mode=ms.ParallelMode.DATA_PARALLEL,
gradients_mean=True)
if config.net_name == "resnet50":
ms.set_auto_parallel_context(all_reduce_fusion_config=config.all_reduce_fusion_config)
def load_pre_trained_checkpoint():
"""
Load checkpoint according to pre_trained path.
"""
param_dict = None
if config.pre_trained:
if os.path.isdir(config.pre_trained):
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path, "ckpt_0")
ckpt_pattern = os.path.join(ckpt_save_dir, "*.ckpt")
ckpt_files = glob.glob(ckpt_pattern)
if not ckpt_files:
logger.warning(f"There is no ckpt file in {ckpt_save_dir}, "
f"pre_trained is unsupported.")
else:
ckpt_files.sort(key=os.path.getmtime, reverse=True)
time_stamp = datetime.datetime.now()
print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')}"
f" pre trained ckpt model {ckpt_files[0]} loading",
flush=True)
param_dict = ms.load_checkpoint(ckpt_files[0])
elif os.path.isfile(config.pre_trained):
param_dict = ms.load_checkpoint(config.pre_trained)
else:
print(f"Invalid pre_trained {config.pre_trained} parameter.")
return param_dict
def init_weight(net, param_dict):
"""init_weight"""
if config.pre_trained:
if param_dict:
if param_dict.get("epoch_num") and param_dict.get("step_num"):
config.has_trained_epoch = int(param_dict["epoch_num"].data.asnumpy())
config.has_trained_step = int(param_dict["step_num"].data.asnumpy())
else:
config.has_trained_epoch = 0
config.has_trained_step = 0
if config.filter_weight:
filter_list = [x.name for x in net.end_point.get_parameters()]
filter_checkpoint_parameter_by_list(param_dict, filter_list)
ms.load_param_into_net(net, param_dict)
else:
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Conv2d):
if config.conv_init == "XavierUniform":
cell.weight.set_data(ms.common.initializer.initializer(ms.common.initializer.XavierUniform(),
cell.weight.shape,
cell.weight.dtype))
elif config.conv_init == "TruncatedNormal":
weight = conv_variance_scaling_initializer(cell.in_channels,
cell.out_channels,
cell.kernel_size[0])
cell.weight.set_data(weight)
if isinstance(cell, nn.Dense):
if config.dense_init == "TruncatedNormal":
cell.weight.set_data(ms.common.initializer.initializer(ms.common.initializer.TruncatedNormal(),
cell.weight.shape,
cell.weight.dtype))
elif config.dense_init == "RandomNormal":
in_channel = cell.in_channels
out_channel = cell.out_channels
weight = np.random.normal(loc=0, scale=0.01, size=out_channel * in_channel)
weight = ms.Tensor(np.reshape(weight, (out_channel, in_channel)), dtype=cell.weight.dtype)
cell.weight.set_data(weight)
def init_lr(step_size):
"""init lr"""
if config.optimizer == "Thor":
from src.lr_generator import get_thor_lr
lr = get_thor_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
else:
if config.net_name in ("resnet18", "resnet34", "resnet50", "resnet152", "se-resnet50"):
lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode)
else:
lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
config.pretrain_epoch_size * step_size)
return lr
def init_loss_scale():
if config.dataset == "imagenet2012":
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
else:
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
return loss
def init_group_params(net):
decayed_params = []
no_decayed_params = []
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
decayed_params.append(param)
else:
no_decayed_params.append(param)
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
{'params': no_decayed_params},
{'order_params': net.trainable_params()}]
return group_params
def run_eval(target, model, ckpt_save_dir, cb):
"""run_eval"""
if config.run_eval:
if config.eval_dataset_path is None or (not os.path.isdir(config.eval_dataset_path)):
raise ValueError("{} is not a existing path.".format(config.eval_dataset_path))
eval_dataset = create_dataset(dataset_path=config.eval_dataset_path, do_train=False,
batch_size=config.batch_size, train_image_size=config.train_image_size,
eval_image_size=config.eval_image_size,
target=target, enable_cache=config.enable_cache,
cache_session_id=config.cache_session_id)
eval_param_dict = {"model": model, "dataset": eval_dataset, "metrics_name": "acc"}
eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=config.eval_interval,
eval_start_epoch=config.eval_start_epoch, save_best_ckpt=config.save_best_ckpt,
ckpt_directory=ckpt_save_dir, besk_ckpt_name="best_acc.ckpt",
metrics_name="acc")
cb += [eval_cb]
def set_save_ckpt_dir():
"""set save ckpt dir"""
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path)
if config.enable_modelarts and config.run_distribute:
ckpt_save_dir = ckpt_save_dir + "ckpt_" + str(get_rank_id()) + "/"
else:
if config.run_distribute:
ckpt_save_dir = ckpt_save_dir + "ckpt_" + str(get_rank()) + "/"
return ckpt_save_dir
@moxing_wrapper()
def train_net():
"""train net"""
target = config.device_target
set_parameter()
ckpt_param_dict = load_pre_trained_checkpoint()
dataset = create_dataset(dataset_path=config.data_path, do_train=True,
batch_size=config.batch_size, train_image_size=config.train_image_size,
eval_image_size=config.eval_image_size, target=target,
distribute=config.run_distribute)
step_size = dataset.get_dataset_size()
net = resnet(class_num=config.class_num)
if config.parameter_server:
net.set_param_ps()
init_weight(net=net, param_dict=ckpt_param_dict)
lr = ms.Tensor(init_lr(step_size=step_size))
# define opt
group_params = init_group_params(net)
opt = nn.Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
if config.optimizer == "LARS":
opt = nn.LARS(opt, epsilon=config.lars_epsilon, coefficient=config.lars_coefficient,
lars_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name)
loss = init_loss_scale()
loss_scale = ms.FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
dist_eval_network = ClassifyCorrectCell(net) if config.run_distribute else None
metrics = {"acc"}
if config.run_distribute:
metrics = {'acc': DistAccuracy(batch_size=config.batch_size, device_num=config.device_num)}
if (config.net_name not in ("resnet18", "resnet34", "resnet50", "resnet101", "resnet152", "se-resnet50")) or \
config.parameter_server or target == "CPU":
## fp32 training
model = ms.Model(net, loss_fn=loss, optimizer=opt, metrics=metrics, eval_network=dist_eval_network)
else:
model = ms.Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=metrics,
amp_level="O3", boost_level=config.boost_mode,
eval_network=dist_eval_network,
boost_config_dict={"grad_freeze": {"total_steps": config.epoch_size * step_size}})
if config.optimizer == "Thor" and config.dataset == "imagenet2012":
from src.lr_generator import get_thor_damping
damping = get_thor_damping(0, config.damping_init, config.damping_decay, 70, step_size)
split_indices = [26, 53]
opt = nn.thor(net, lr, ms.Tensor(damping), config.momentum, config.weight_decay, config.loss_scale,
config.batch_size, split_indices=split_indices, frequency=config.frequency)
model = ConvertModelUtils().convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=opt,
loss_scale_manager=loss_scale, metrics={'acc'},
amp_level="O3")
config.run_eval = False
logger.warning("Thor optimizer not support evaluation while training.")
# define callbacks
time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossCallBack(config.has_trained_epoch)
cb = [time_cb, loss_cb]
ckpt_save_dir = set_save_ckpt_dir()
if config.save_checkpoint:
ckpt_append_info = [{"epoch_num": config.has_trained_epoch, "step_num": config.has_trained_step}]
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max,
append_info=ckpt_append_info)
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
run_eval(target, model, ckpt_save_dir, cb)
# train model
if config.net_name == "se-resnet50":
config.epoch_size = config.train_epoch_size
dataset_sink_mode = (not config.parameter_server) and target != "CPU"
config.pretrain_epoch_size = config.has_trained_epoch
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)
if config.run_eval and config.enable_cache:
print("Remember to shut down the cache server via \"cache_admin --stop\"")
if __name__ == '__main__':
train_net()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mindspore/models.git
git@gitee.com:mindspore/models.git
mindspore
models
models
r1.8

搜索帮助