代码拉取完成,页面将自动刷新
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for SSD"""
import os
import mindspore as ms
from mindspore import Tensor
from src.ssd import SSD300, SsdInferWithDecoder, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn, ssd_mobilenet_v1, ssd_resnet50_fpn, ssd_vgg16
from src.dataset import create_ssd_dataset, create_mindrecord
from src.eval_utils import apply_eval
from src.box_utils import default_boxes
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
def ssd_eval(dataset_path, ckpt_path, anno_json):
"""SSD evaluation."""
batch_size = 1
ds = create_ssd_dataset(dataset_path, batch_size=batch_size,
is_training=False, use_multiprocessing=False)
if config.model_name == "ssd300":
net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
elif config.model_name == "ssd_vgg16":
net = ssd_vgg16(config=config)
elif config.model_name == "ssd_mobilenet_v1_fpn":
net = ssd_mobilenet_v1_fpn(config=config)
elif config.model_name == "ssd_resnet50_fpn":
net = ssd_resnet50_fpn(config=config)
elif config.model_name == "ssd_mobilenet_v1":
net = ssd_mobilenet_v1(config=config)
else:
raise ValueError(f'config.model: {config.model_name} is not supported')
net = SsdInferWithDecoder(net, Tensor(default_boxes), config)
print("Load Checkpoint!")
param_dict = ms.load_checkpoint(ckpt_path)
net.init_parameters_data()
ms.load_param_into_net(net, param_dict)
net.set_train(False)
total = ds.get_dataset_size() * batch_size
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
eval_param_dict = {"net": net, "dataset": ds, "anno_json": anno_json}
mAP = apply_eval(eval_param_dict)
print("\n========================================\n")
print(f"mAP: {mAP}")
@moxing_wrapper()
def eval_net():
if hasattr(config, 'num_ssd_boxes') and config.num_ssd_boxes == -1:
num = 0
h, w = config.img_shape
for i in range(len(config.steps)):
num += (h // config.steps[i]) * (w // config.steps[i]) * config.num_default[i]
config.num_ssd_boxes = num
if config.dataset == "coco":
coco_root = os.path.join(config.data_path, config.coco_root)
json_path = os.path.join(coco_root, config.instances_set.format(config.val_data_type))
elif config.dataset == "voc":
voc_root = os.path.join(config.data_path, config.voc_root)
json_path = os.path.join(voc_root, config.voc_json)
else:
raise ValueError('SSD eval only support dataset mode is coco and voc!')
ms.set_context(mode=ms.GRAPH_MODE, device_target=config.device_target, device_id=config.device_id)
mindrecord_file = create_mindrecord(config.dataset, "ssd_eval.mindrecord", False)
print("Start Eval!")
ssd_eval(mindrecord_file, config.checkpoint_file_path, json_path)
if __name__ == '__main__':
eval_net()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。