代码拉取完成,页面将自动刷新
/*
Copyright IBM Corp. 2016 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package crypto
import (
"errors"
"reflect"
"crypto/aes"
"crypto/cipher"
"encoding/asn1"
"encoding/binary"
"github.com/hyperledger/fabric/core/crypto/primitives"
"github.com/hyperledger/fabric/core/crypto/utils"
obc "github.com/hyperledger/fabric/protos"
)
func (validator *validatorImpl) GetStateEncryptor(deployTx, executeTx *obc.Transaction) (StateEncryptor, error) {
switch executeTx.ConfidentialityProtocolVersion {
case "1.2":
return validator.getStateEncryptor1_2(deployTx, executeTx)
}
return nil, utils.ErrInvalidConfidentialityLevel
}
func (validator *validatorImpl) getStateEncryptor1_2(deployTx, executeTx *obc.Transaction) (StateEncryptor, error) {
// Check nonce
if deployTx.Nonce == nil || len(deployTx.Nonce) == 0 {
return nil, errors.New("Invalid deploy nonce.")
}
if executeTx.Nonce == nil || len(executeTx.Nonce) == 0 {
return nil, errors.New("Invalid invoke nonce.")
}
// Check ChaincodeID
if deployTx.ChaincodeID == nil {
return nil, errors.New("Invalid deploy chaincodeID.")
}
if executeTx.ChaincodeID == nil {
return nil, errors.New("Invalid execute chaincodeID.")
}
// Check that deployTx and executeTx refers to the same chaincode
if !reflect.DeepEqual(deployTx.ChaincodeID, executeTx.ChaincodeID) {
return nil, utils.ErrDifferentChaincodeID
}
// Check the confidentiality protocol version
if deployTx.ConfidentialityProtocolVersion != executeTx.ConfidentialityProtocolVersion {
return nil, utils.ErrDifferrentConfidentialityProtocolVersion
}
validator.Debugf("Parsing transaction. Type [%s]. Confidentiality Protocol Version [%s]", executeTx.Type.String(), executeTx.ConfidentialityProtocolVersion)
deployStateKey, err := validator.getStateKeyFromTransaction(deployTx)
if executeTx.Type == obc.Transaction_CHAINCODE_QUERY {
validator.Debug("Parsing Query transaction...")
executeStateKey, err := validator.getStateKeyFromTransaction(executeTx)
// Compute deployTxKey key from the deploy transaction. This is used to decrypt the actual state
// of the chaincode
deployTxKey := primitives.HMAC(deployStateKey, deployTx.Nonce)
// Compute the key used to encrypt the result of the query
//queryKey := utils.HMACTruncated(executeStateKey, append([]byte{6}, executeTx.Nonce...), utils.AESKeyLength)
// Init the state encryptor
se := queryStateEncryptor{}
err = se.init(validator.nodeImpl, executeStateKey, deployTxKey)
if err != nil {
return nil, err
}
return &se, nil
}
// Compute deployTxKey key from the deploy transaction
deployTxKey := primitives.HMAC(deployStateKey, deployTx.Nonce)
// Mask executeTx.Nonce
executeTxNonce := primitives.HMACTruncated(deployTxKey, primitives.Hash(executeTx.Nonce), primitives.NonceSize)
// Compute stateKey to encrypt the states and nonceStateKey to generates IVs. This
// allows validators to reach consesus
stateKey := primitives.HMACTruncated(deployTxKey, append([]byte{3}, executeTxNonce...), primitives.AESKeyLength)
nonceStateKey := primitives.HMAC(deployTxKey, append([]byte{4}, executeTxNonce...))
// Init the state encryptor
se := stateEncryptorImpl{}
err = se.init(validator.nodeImpl, stateKey, nonceStateKey, deployTxKey, executeTxNonce)
if err != nil {
return nil, err
}
return &se, nil
}
func (validator *validatorImpl) getStateKeyFromTransaction(tx *obc.Transaction) ([]byte, error) {
cipher, err := validator.eciesSPI.NewAsymmetricCipherFromPrivateKey(validator.chainPrivateKey)
if err != nil {
validator.Errorf("Failed init decryption engine [%s].", err.Error())
return nil, err
}
msgToValidatorsRaw, err := cipher.Process(tx.ToValidators)
if err != nil {
validator.Errorf("Failed decrypting message to validators [% x]: [%s].", tx.ToValidators, err.Error())
return nil, err
}
msgToValidators := new(chainCodeValidatorMessage1_2)
_, err = asn1.Unmarshal(msgToValidatorsRaw, msgToValidators)
if err != nil {
validator.Errorf("Failed unmarshalling message to validators [% x]: [%s].", msgToValidators, err.Error())
return nil, err
}
return msgToValidators.StateKey, nil
}
type stateEncryptorImpl struct {
node *nodeImpl
deployTxKey []byte
invokeTxNonce []byte
stateKey []byte
nonceStateKey []byte
gcmEnc cipher.AEAD
nonceSize int
counter uint64
}
func (se *stateEncryptorImpl) init(node *nodeImpl, stateKey, nonceStateKey, deployTxKey, invokeTxNonce []byte) error {
// Initi fields
se.counter = 0
se.node = node
se.stateKey = stateKey
se.nonceStateKey = nonceStateKey
se.deployTxKey = deployTxKey
se.invokeTxNonce = invokeTxNonce
// Init aes
c, err := aes.NewCipher(se.stateKey)
if err != nil {
return err
}
// Init gcm for encryption
se.gcmEnc, err = cipher.NewGCM(c)
if err != nil {
return err
}
// Init nonce size
se.nonceSize = se.gcmEnc.NonceSize()
return nil
}
func (se *stateEncryptorImpl) Encrypt(msg []byte) ([]byte, error) {
var b = make([]byte, 8)
binary.BigEndian.PutUint64(b, se.counter)
se.node.Debugf("Encrypting with counter [% x].", b)
// se.log.Infof("Encrypting with txNonce ", utils.EncodeBase64(se.txNonce))
nonce := primitives.HMACTruncated(se.nonceStateKey, b, se.nonceSize)
se.counter++
// Seal will append the output to the first argument; the usage
// here appends the ciphertext to the nonce. The final parameter
// is any additional data to be authenticated.
out := se.gcmEnc.Seal(nonce, nonce, msg, se.invokeTxNonce)
return append(se.invokeTxNonce, out...), nil
}
func (se *stateEncryptorImpl) Decrypt(raw []byte) ([]byte, error) {
if len(raw) == 0 {
// A nil ciphertext decrypts to nil
return nil, nil
}
if len(raw) <= primitives.NonceSize {
return nil, utils.ErrDecrypt
}
// raw consists of (txNonce, ct)
txNonce := raw[:primitives.NonceSize]
// se.log.Infof("Decrypting with txNonce ", utils.EncodeBase64(txNonce))
ct := raw[primitives.NonceSize:]
nonce := make([]byte, se.nonceSize)
copy(nonce, ct)
key := primitives.HMACTruncated(se.deployTxKey, append([]byte{3}, txNonce...), primitives.AESKeyLength)
// se.log.Infof("Decrypting with key ", utils.EncodeBase64(key))
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
gcm, err := cipher.NewGCM(c)
if err != nil {
return nil, err
}
se.nonceSize = se.gcmEnc.NonceSize()
out, err := gcm.Open(nil, nonce, ct[se.nonceSize:], txNonce)
if err != nil {
return nil, utils.ErrDecrypt
}
return out, nil
}
type queryStateEncryptor struct {
node *nodeImpl
deployTxKey []byte
gcmEnc cipher.AEAD
nonceSize int
}
func (se *queryStateEncryptor) init(node *nodeImpl, queryKey, deployTxKey []byte) error {
// Initi fields
se.node = node
se.deployTxKey = deployTxKey
// se.log.Infof("QUERY Encrypting with key ", utils.EncodeBase64(queryKey))
// Init aes
c, err := aes.NewCipher(queryKey)
if err != nil {
return err
}
// Init gcm for encryption
se.gcmEnc, err = cipher.NewGCM(c)
if err != nil {
return err
}
// Init nonce size
se.nonceSize = se.gcmEnc.NonceSize()
return nil
}
func (se *queryStateEncryptor) Encrypt(msg []byte) ([]byte, error) {
nonce, err := primitives.GetRandomBytes(se.nonceSize)
if err != nil {
se.node.Errorf("Failed getting randomness [%s].", err.Error())
return nil, err
}
// Seal will append the output to the first argument; the usage
// here appends the ciphertext to the nonce. The final parameter
// is any additional data to be authenticated.
out := se.gcmEnc.Seal(nonce, nonce, msg, nil)
return out, nil
}
func (se *queryStateEncryptor) Decrypt(raw []byte) ([]byte, error) {
if len(raw) == 0 {
// A nil ciphertext decrypts to nil
return nil, nil
}
if len(raw) <= primitives.NonceSize {
return nil, utils.ErrDecrypt
}
// raw consists of (txNonce, ct)
txNonce := raw[:primitives.NonceSize]
// se.log.Infof("Decrypting with txNonce ", utils.EncodeBase64(txNonce))
ct := raw[primitives.NonceSize:]
nonce := make([]byte, se.nonceSize)
copy(nonce, ct)
key := primitives.HMACTruncated(se.deployTxKey, append([]byte{3}, txNonce...), primitives.AESKeyLength)
// se.log.Infof("Decrypting with key ", utils.EncodeBase64(key))
c, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
gcm, err := cipher.NewGCM(c)
if err != nil {
return nil, err
}
se.nonceSize = se.gcmEnc.NonceSize()
out, err := gcm.Open(nil, nonce, ct[se.nonceSize:], txNonce)
if err != nil {
return nil, utils.ErrDecrypt
}
return out, nil
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。