代码拉取完成,页面将自动刷新
/*
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package tensorflow
// #include <stdlib.h>
// #include <string.h>
// #include "tensorflow/c/c_api.h"
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"reflect"
"runtime"
"unsafe"
)
// DataType holds the type for a scalar value. E.g., one slot in a tensor.
type DataType C.TF_DataType
// Types of scalar values in the TensorFlow type system.
const (
Float DataType = C.TF_FLOAT
Double DataType = C.TF_DOUBLE
Int32 DataType = C.TF_INT32
Uint32 DataType = C.TF_UINT32
Uint8 DataType = C.TF_UINT8
Int16 DataType = C.TF_INT16
Int8 DataType = C.TF_INT8
String DataType = C.TF_STRING
Complex64 DataType = C.TF_COMPLEX64
Complex DataType = C.TF_COMPLEX
Int64 DataType = C.TF_INT64
Uint64 DataType = C.TF_UINT64
Bool DataType = C.TF_BOOL
Qint8 DataType = C.TF_QINT8
Quint8 DataType = C.TF_QUINT8
Qint32 DataType = C.TF_QINT32
Bfloat16 DataType = C.TF_BFLOAT16
Qint16 DataType = C.TF_QINT16
Quint16 DataType = C.TF_QUINT16
Uint16 DataType = C.TF_UINT16
Complex128 DataType = C.TF_COMPLEX128
Half DataType = C.TF_HALF
)
// Tensor holds a multi-dimensional array of elements of a single data type.
type Tensor struct {
c *C.TF_Tensor
shape []int64
}
// NewTensor converts from a Go value to a Tensor. Valid values are scalars,
// slices, and arrays. Every element of a slice must have the same length so
// that the resulting Tensor has a valid shape.
func NewTensor(value interface{}) (*Tensor, error) {
val := reflect.ValueOf(value)
shape, dataType, err := shapeAndDataTypeOf(val)
if err != nil {
return nil, err
}
nflattened := numElements(shape)
nbytes := typeOf(dataType, nil).Size() * uintptr(nflattened)
if dataType == String {
// TF_STRING tensors are encoded as an array of 8-byte offsets
// followed by string data. See c_api.h.
nbytes = uintptr(nflattened*8) + byteSizeOfEncodedStrings(value)
}
var shapePtr *C.int64_t
if len(shape) > 0 {
shapePtr = (*C.int64_t)(unsafe.Pointer(&shape[0]))
}
t := &Tensor{
c: C.TF_AllocateTensor(C.TF_DataType(dataType), shapePtr, C.int(len(shape)), C.size_t(nbytes)),
shape: shape,
}
runtime.SetFinalizer(t, (*Tensor).finalize)
raw := tensorData(t.c)
buf := bytes.NewBuffer(raw[:0:len(raw)])
if dataType != String {
if err := encodeTensor(buf, val, shape); err != nil {
return nil, err
}
if uintptr(buf.Len()) != nbytes {
return nil, bug("NewTensor incorrectly calculated the size of a tensor with type %v and shape %v as %v bytes instead of %v", dataType, shape, nbytes, buf.Len())
}
} else {
e := stringEncoder{offsets: buf, data: raw[nflattened*8:], status: newStatus()}
if err := e.encode(reflect.ValueOf(value), shape); err != nil {
return nil, err
}
if int64(buf.Len()) != nflattened*8 {
return nil, bug("invalid offset encoding for TF_STRING tensor with shape %v (got %v, want %v)", shape, buf.Len(), nflattened*8)
}
}
return t, nil
}
// ReadTensor constructs a Tensor with the provided type and shape from the
// serialized tensor contents in r.
//
// See also WriteContentsTo.
func ReadTensor(dataType DataType, shape []int64, r io.Reader) (*Tensor, error) {
if err := isTensorSerializable(dataType); err != nil {
return nil, err
}
nbytes := typeOf(dataType, nil).Size() * uintptr(numElements(shape))
var shapePtr *C.int64_t
if len(shape) > 0 {
shapePtr = (*C.int64_t)(unsafe.Pointer(&shape[0]))
}
t := &Tensor{
c: C.TF_AllocateTensor(C.TF_DataType(dataType), shapePtr, C.int(len(shape)), C.size_t(nbytes)),
shape: shape,
}
runtime.SetFinalizer(t, (*Tensor).finalize)
raw := tensorData(t.c)
if _, err := io.ReadFull(r, raw); err != nil {
return nil, err
}
return t, nil
}
// newTensorFromC takes ownership of c and returns the owning Tensor.
func newTensorFromC(c *C.TF_Tensor) *Tensor {
var shape []int64
if ndims := int(C.TF_NumDims(c)); ndims > 0 {
shape = make([]int64, ndims)
}
for i := range shape {
shape[i] = int64(C.TF_Dim(c, C.int(i)))
}
t := &Tensor{c: c, shape: shape}
runtime.SetFinalizer(t, (*Tensor).finalize)
return t
}
func (t *Tensor) finalize() { C.TF_DeleteTensor(t.c) }
// DataType returns the scalar datatype of the Tensor.
func (t *Tensor) DataType() DataType { return DataType(C.TF_TensorType(t.c)) }
// Shape returns the shape of the Tensor.
func (t *Tensor) Shape() []int64 { return t.shape }
// Value converts the Tensor to a Go value. For now, not all Tensor types are
// supported, and this function may panic if it encounters an unsupported
// DataType.
//
// The type of the output depends on the Tensor type and dimensions.
// For example:
// Tensor(int64, 0): int64
// Tensor(float64, 3): [][][]float64
func (t *Tensor) Value() interface{} {
typ := typeOf(t.DataType(), t.Shape())
val := reflect.New(typ)
raw := tensorData(t.c)
if t.DataType() != String {
if err := decodeTensor(bytes.NewReader(raw), t.Shape(), typ, val); err != nil {
panic(bug("unable to decode Tensor of type %v and shape %v - %v", t.DataType(), t.Shape(), err))
}
} else {
nflattened := numElements(t.Shape())
d := stringDecoder{offsets: bytes.NewReader(raw[0 : 8*nflattened]), data: raw[8*nflattened:], status: newStatus()}
if err := d.decode(val, t.Shape()); err != nil {
panic(bug("unable to decode String tensor with shape %v - %v", t.Shape(), err))
}
}
return reflect.Indirect(val).Interface()
}
// WriteContentsTo writes the serialized contents of t to w.
//
// Returns the number of bytes written. See ReadTensor for
// reconstructing a Tensor from the serialized form.
//
// WARNING: WriteContentsTo is not comprehensive and will fail
// if t.DataType() is non-numeric (e.g., String). See
// https://github.com/tensorflow/tensorflow/issues/6003.
func (t *Tensor) WriteContentsTo(w io.Writer) (int64, error) {
if err := isTensorSerializable(t.DataType()); err != nil {
return 0, err
}
return io.Copy(w, bytes.NewReader(tensorData(t.c)))
}
func tensorData(c *C.TF_Tensor) []byte {
// See: https://github.com/golang/go/wiki/cgo#turning-c-arrays-into-go-slices
cbytes := C.TF_TensorData(c)
if cbytes == nil {
return nil
}
length := int(C.TF_TensorByteSize(c))
slice := (*[1 << 30]byte)(unsafe.Pointer(cbytes))[:length:length]
return slice
}
var types = []struct {
typ reflect.Type
dataType C.TF_DataType
}{
{reflect.TypeOf(float32(0)), C.TF_FLOAT},
{reflect.TypeOf(float64(0)), C.TF_DOUBLE},
{reflect.TypeOf(int32(0)), C.TF_INT32},
{reflect.TypeOf(uint32(0)), C.TF_UINT32},
{reflect.TypeOf(uint8(0)), C.TF_UINT8},
{reflect.TypeOf(int16(0)), C.TF_INT16},
{reflect.TypeOf(int8(0)), C.TF_INT8},
{reflect.TypeOf(""), C.TF_STRING},
{reflect.TypeOf(complex(float32(0), float32(0))), C.TF_COMPLEX64},
{reflect.TypeOf(int64(0)), C.TF_INT64},
{reflect.TypeOf(uint64(0)), C.TF_UINT64},
{reflect.TypeOf(false), C.TF_BOOL},
{reflect.TypeOf(uint16(0)), C.TF_UINT16},
{reflect.TypeOf(complex(float64(0), float64(0))), C.TF_COMPLEX128},
// TODO(apassos): support DT_RESOURCE representation in go.
// TODO(keveman): support DT_VARIANT representation in go.
}
// shapeAndDataTypeOf returns the data type and shape of the Tensor
// corresponding to a Go type.
func shapeAndDataTypeOf(val reflect.Value) (shape []int64, dt DataType, err error) {
typ := val.Type()
for typ.Kind() == reflect.Array || typ.Kind() == reflect.Slice {
shape = append(shape, int64(val.Len()))
if val.Len() > 0 {
// In order to check tensor structure properly in general case we need to iterate over all slices of the tensor to check sizes match
// Since we already going to iterate over all elements in encodeTensor() let's
// 1) do the actual check in encodeTensor() to save some cpu cycles here
// 2) assume the shape is represented by lengths of elements with zero index in each dimension
val = val.Index(0)
}
typ = typ.Elem()
}
for _, t := range types {
if typ.Kind() == t.typ.Kind() {
return shape, DataType(t.dataType), nil
}
}
return shape, dt, fmt.Errorf("unsupported type %v", typ)
}
// typeOf converts from a DataType and Shape to the equivalent Go type.
func typeOf(dt DataType, shape []int64) reflect.Type {
var ret reflect.Type
for _, t := range types {
if dt == DataType(t.dataType) {
ret = t.typ
break
}
}
if ret == nil {
panic(bug("DataType %v is not supported (see https://www.tensorflow.org/code/tensorflow/core/framework/types.proto)", dt))
}
for range shape {
ret = reflect.SliceOf(ret)
}
return ret
}
func numElements(shape []int64) int64 {
n := int64(1)
for _, d := range shape {
n *= d
}
return n
}
// byteSizeOfEncodedStrings returns the size of the encoded strings in val.
// val MUST be a string, or a container (array/slice etc.) of strings.
func byteSizeOfEncodedStrings(val interface{}) uintptr {
if s, ok := val.(string); ok {
return uintptr(C.TF_StringEncodedSize(C.size_t(len(s))))
}
// Otherwise must be an array or slice.
var size uintptr
v := reflect.ValueOf(val)
for i := 0; i < v.Len(); i++ {
size += byteSizeOfEncodedStrings(v.Index(i).Interface())
}
return size
}
// encodeTensor writes v to the specified buffer using the format specified in
// c_api.h. Use stringEncoder for String tensors.
func encodeTensor(w *bytes.Buffer, v reflect.Value, shape []int64) error {
switch v.Kind() {
case reflect.Bool:
b := byte(0)
if v.Bool() {
b = 1
}
if err := w.WriteByte(b); err != nil {
return err
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
if err := binary.Write(w, nativeEndian, v.Interface()); err != nil {
return err
}
case reflect.Array, reflect.Slice:
// If current dimension is a slice, verify that it has the expected size
// Go's type system makes that guarantee for arrays.
if v.Kind() == reflect.Slice {
expected := int(shape[0])
if v.Len() != expected {
return fmt.Errorf("mismatched slice lengths: %d and %d", v.Len(), expected)
}
}
// Optimisation: if only one dimension is left we can use binary.Write() directly for this slice
if len(shape) == 1 && v.Len() > 0 {
switch v.Index(0).Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return binary.Write(w, nativeEndian, v.Interface())
}
}
subShape := shape[1:]
for i := 0; i < v.Len(); i++ {
err := encodeTensor(w, v.Index(i), subShape)
if err != nil {
return err
}
}
default:
return fmt.Errorf("unsupported type %v", v.Type())
}
return nil
}
// decodeTensor decodes the Tensor from the buffer to ptr using the format
// specified in c_api.h. Use stringDecoder for String tensors.
func decodeTensor(r *bytes.Reader, shape []int64, typ reflect.Type, ptr reflect.Value) error {
switch typ.Kind() {
case reflect.Bool:
b, err := r.ReadByte()
if err != nil {
return err
}
ptr.Elem().SetBool(b == 1)
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
if err := binary.Read(r, nativeEndian, ptr.Interface()); err != nil {
return err
}
case reflect.Slice:
val := reflect.Indirect(ptr)
val.Set(reflect.MakeSlice(typ, int(shape[0]), int(shape[0])))
// Optimization: if only one dimension is left we can use binary.Read() directly for this slice
if len(shape) == 1 && val.Len() > 0 {
switch val.Index(0).Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
return binary.Read(r, nativeEndian, val.Interface())
}
}
for i := 0; i < val.Len(); i++ {
if err := decodeTensor(r, shape[1:], typ.Elem(), val.Index(i).Addr()); err != nil {
return err
}
}
default:
return fmt.Errorf("unsupported type %v", typ)
}
return nil
}
type stringEncoder struct {
offsets io.Writer
data []byte
offset uint64
status *status
}
func (e *stringEncoder) encode(v reflect.Value, shape []int64) error {
if v.Kind() == reflect.String {
if err := binary.Write(e.offsets, nativeEndian, e.offset); err != nil {
return err
}
var (
s = v.Interface().(string)
src = C.CString(s)
srcLen = C.size_t(len(s))
dst = (*C.char)(unsafe.Pointer(&e.data[e.offset]))
dstLen = C.size_t(uint64(len(e.data)) - e.offset)
)
e.offset += uint64(C.TF_StringEncode(src, srcLen, dst, dstLen, e.status.c))
C.free(unsafe.Pointer(src))
return e.status.Err()
}
if v.Kind() == reflect.Slice {
expected := int(shape[0])
if v.Len() != expected {
return fmt.Errorf("mismatched slice lengths: %d and %d", v.Len(), expected)
}
}
subShape := shape[1:]
for i := 0; i < v.Len(); i++ {
if err := e.encode(v.Index(i), subShape); err != nil {
return err
}
}
return nil
}
type stringDecoder struct {
offsets io.Reader
data []byte
status *status
}
func (d *stringDecoder) decode(ptr reflect.Value, shape []int64) error {
if len(shape) == 0 {
var offset uint64
if err := binary.Read(d.offsets, nativeEndian, &offset); err != nil {
return err
}
var (
src = (*C.char)(unsafe.Pointer(&d.data[offset]))
srcLen = C.size_t(len(d.data)) - C.size_t(offset)
dst *C.char
dstLen C.size_t
)
if offset > uint64(len(d.data)) {
return fmt.Errorf("invalid offsets in String Tensor")
}
C.TF_StringDecode(src, srcLen, &dst, &dstLen, d.status.c)
if err := d.status.Err(); err != nil {
return err
}
s := ptr.Interface().(*string)
*s = C.GoStringN(dst, C.int(dstLen))
return nil
}
val := reflect.Indirect(ptr)
val.Set(reflect.MakeSlice(typeOf(String, shape), int(shape[0]), int(shape[0])))
for i := 0; i < val.Len(); i++ {
if err := d.decode(val.Index(i).Addr(), shape[1:]); err != nil {
return err
}
}
return nil
}
func bug(format string, args ...interface{}) error {
return fmt.Errorf("BUG: Please report at https://github.com/tensorflow/tensorflow/issues with the note: Go TensorFlow %v: %v", Version(), fmt.Sprintf(format, args...))
}
func isTensorSerializable(dataType DataType) error {
// For numeric types, the serialized Tensor matches the in-memory
// representation. See the implementation of Tensor::AsProtoContent in
// https://www.tensorflow.org/code/tensorflow/core/framework/tensor.cc
//
// The more appropriate way to be in sync with Tensor::AsProtoContent
// would be to have the TensorFlow C library export functions for
// serialization and deserialization of Tensors. Till then capitalize
// on knowledge of the implementation for numeric types.
switch dataType {
case Float, Double, Int32, Uint8, Int16, Int8, Complex, Int64, Bool, Quint8, Qint32, Bfloat16, Qint16, Quint16, Uint16, Complex128, Half:
return nil
default:
return fmt.Errorf("serialization of tensors with the DataType %d is not yet supported, see https://github.com/tensorflow/tensorflow/issues/6003", dataType)
}
}
// nativeEndian is the byte order for the local platform. Used to send back and
// forth Tensors with the C API. We test for endianness at runtime because
// some architectures can be booted into different endian modes.
var nativeEndian binary.ByteOrder
func init() {
buf := [2]byte{}
*(*uint16)(unsafe.Pointer(&buf[0])) = uint16(0xABCD)
switch buf {
case [2]byte{0xCD, 0xAB}:
nativeEndian = binary.LittleEndian
case [2]byte{0xAB, 0xCD}:
nativeEndian = binary.BigEndian
default:
panic("Could not determine native endianness.")
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。