147 Star 500 Fork 3

Gitee 极速下载/tensorflow

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/tensorflow/tensorflow
克隆/下载
scope.go 6.03 KB
一键复制 编辑 原始数据 按行查看 历史
Kazuaki Ishizaki 提交于 2019-12-20 06:49 . minor spelling tweaks
/*
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package op
import (
"fmt"
"runtime/debug"
tf "github.com/tensorflow/tensorflow/tensorflow/go"
)
// Scope encapsulates common operation properties when building a Graph.
//
// A Scope object (and its derivatives, e.g., obtained from Scope.SubScope)
// act as a builder for graphs. They allow common properties (such as
// a name prefix) to be specified for multiple operations being added
// to the graph.
//
// A Scope object and all its derivatives (e.g., obtained from Scope.SubScope)
// are not safe for concurrent use by multiple goroutines.
type Scope struct {
graph *tf.Graph
namemap map[string]int
namespace string
controlDependencies []*tf.Operation
device string
err *scopeErr
}
// scopeErr is used to share errors between all derivatives of a root scope.
type scopeErr struct {
err error
}
// NewScope creates a Scope initialized with an empty Graph.
func NewScope() *Scope {
return &Scope{graph: tf.NewGraph(), namemap: make(map[string]int), err: new(scopeErr)}
}
// NewScopeWithGraph creates a Scope initialized with the Graph thats passed in
func NewScopeWithGraph(g *tf.Graph) *Scope {
return &Scope{graph: g, namemap: make(map[string]int), err: new(scopeErr)}
}
// Finalize returns the Graph on which this scope operates on and renders s
// unusable. If there was an error during graph construction, that error is
// returned instead.
func (s *Scope) Finalize() (*tf.Graph, error) {
if err := s.Err(); err != nil {
return nil, err
}
s.err.err = fmt.Errorf("Scope has been finalized and is no longer usable")
return s.graph, nil
}
// AddOperation adds the operation to the Graph managed by s.
//
// If there is a name prefix associated with s (such as if s was created
// by a call to SubScope), then this prefix will be applied to the name
// of the operation being added. See also Graph.AddOperation.
func (s *Scope) AddOperation(args tf.OpSpec) *tf.Operation {
if s.Err() != nil {
return nil
}
if args.Name == "" {
args.Name = args.Type
}
if s.namespace != "" {
args.Name = s.namespace + "/" + args.Name
}
args.ControlDependencies = append(args.ControlDependencies, s.controlDependencies...)
args.Device = s.device
op, err := s.graph.AddOperation(args)
if err != nil {
s.UpdateErr(args.Type, err)
}
return op
}
// SubScope returns a new Scope which will cause all operations added to the
// graph to be namespaced with 'namespace'. If namespace collides with an
// existing namespace within the scope, then a suffix will be added.
func (s *Scope) SubScope(namespace string) *Scope {
namespace = s.uniqueName(namespace)
if s.namespace != "" {
namespace = s.namespace + "/" + namespace
}
return &Scope{
graph: s.graph,
namemap: make(map[string]int),
namespace: namespace,
controlDependencies: s.controlDependencies,
device: s.device,
err: s.err,
}
}
// WithControlDependencies returns a new Scope which will cause all operations
// added to the graph to execute only after all the provided operations have
// executed first (in addition to any other control dependencies in s).
func (s *Scope) WithControlDependencies(ops ...*tf.Operation) *Scope {
// Force a copy of the control dependencies into a new underlying array on
// every call. We cannot alias the same underlying array as `ops`, otherwise
// the user could modify that array after calling s.WithControlDependencies,
// which would be confusing. We cannot alias the same underlying array as the
// original `s.controlDependencies`, since Scopes form a logical tree, and
// other calls to s.WithControlDependencies could stomp on each other.
deps := make([]*tf.Operation, 0, len(s.controlDependencies)+len(ops))
deps = append(deps, s.controlDependencies...)
deps = append(deps, ops...)
return &Scope{
graph: s.graph,
namemap: s.namemap,
namespace: s.namespace,
controlDependencies: deps,
device: s.device,
err: s.err,
}
}
// WithDevice returns a new Scope which will cause all operations added to the
// graph to execute on devices that match the provided device specification.
//
// For example, WithDevice("/device:GPU:0") will cause operations added to
// the graph to execute on GPU #0.
//
// An empty string removes any device restrictions.
func (s *Scope) WithDevice(device string) *Scope {
return &Scope{
graph: s.graph,
namemap: s.namemap,
namespace: s.namespace,
controlDependencies: s.controlDependencies,
device: device,
err: s.err,
}
}
// Err returns the error, if any, encountered during the construction
// of the Graph managed by s.
//
// Once Err returns a non-nil error, all future calls will do the same,
// indicating that the scope should be discarded as the graph could not
// be constructed.
func (s *Scope) Err() error {
return s.err.err
}
// UpdateErr is used to notify Scope of any graph construction errors
// while creating the operation op.
func (s *Scope) UpdateErr(op string, err error) {
if s.err.err == nil {
s.err.err = fmt.Errorf("failed to add operation %q: %v (Stacktrace: %s)", op, err, debug.Stack())
}
}
func (s *Scope) uniqueName(name string) string {
count := s.namemap[name]
s.namemap[name]++
if count == 0 {
return name
}
return fmt.Sprint(name, "_", count)
}
func (s *Scope) opName(typ string) string {
if s.namespace == "" {
return typ
}
return s.namespace + "/" + typ
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/mirrors/tensorflow.git
git@gitee.com:mirrors/tensorflow.git
mirrors
tensorflow
tensorflow
v2.2.0-rc0

搜索帮助