代码拉取完成,页面将自动刷新
#
# Copyright (C) 2022 Apple Inc. All rights reserved.
#
'''
Render multiple people in a scene.
We manually align the human to the scene using Blender, and hard code the alignments.
'''
import os
import argparse
import copy
import joblib
import imageio
import torch
import numpy as np
from geometry import transformations
from models import human_nerf
from utils import render_utils, utils, ray_utils
from data_io import neuman_helper
from options import options
from models.smpl import SMPL
ACTOR_WEIGHTS_DICT = {
'seattle': 'seattle_human',
'citron': 'citron_human',
'parkinglot': 'parkinglot_human',
}
def read_novel_caps(opt, num_caps, scene):
novel_caps = []
if os.path.basename(opt.scene_dir) == 'seattle' and opt.motion_name == 'dance_together':
for i in range(num_caps):
cap = copy.deepcopy(scene.captures[20])
ellipse_a = 0.15
ellipse_b = 0.05
x_offset = cap.cam_pose.right * ellipse_a * np.cos((i/num_caps) * (4*np.pi))
y_offset = cap.cam_pose.up * ellipse_b * np.sin((i/num_caps) * (4*np.pi))
cap.cam_pose.camera_center_in_world = cap.cam_pose.camera_center_in_world + x_offset + y_offset
novel_caps.append(cap)
return novel_caps
def get_mocap_path(motion_name, actor_name=None):
if motion_name == 'dance_together':
return './data/SFU/0018/0018_XinJiang002_poses.npz', 0, 800, 4
else:
raise ValueError('Define new elif branch')
def get_manual_alignment(motion_name, actor_name):
if motion_name == 'dance_together':
if actor_name == 'seattle':
manual_trans = np.array([0, 0.15, 0.77])
manual_rot = np.array([90.4, -10.9, 4]) / 180 * np.pi
manual_scale = 0.2
if actor_name == 'citron':
manual_trans = np.array([-0.36, 0.13, 0.92])
manual_rot = np.array([90, -9.4, 4]) / 180 * np.pi
manual_scale = 0.2
if actor_name == 'parkinglot':
manual_trans = np.array([0.32, 0.12, 0.96])
manual_rot = np.array([90, -11.6, 4]) / 180 * np.pi
manual_scale = 0.2
else:
manual_trans = np.array([0, 0, 0])
manual_rot = np.array([0, 0, 0]) / 180 * np.pi
manual_scale = 1
return manual_trans, manual_rot, manual_scale
def read_actor(opt, actor_name):
# read network
net = human_nerf.HumanNeRF(opt)
weights = torch.load(f'./out/{ACTOR_WEIGHTS_DICT[actor_name]}/checkpoint.pth.tar', map_location='cpu')
utils.safe_load_weights(net, weights['hybrid_model_state_dict'])
# read mocap data(already in SMPL format)
mocap_path, start_idx, end_idx, skip = get_mocap_path(opt.motion_name)
motions = np.load(mocap_path)
poses = motions['poses'][start_idx:end_idx:skip]
poses = poses[:, :72]
poses[:, 66:] = 0
trans = motions['trans'][start_idx:end_idx:skip]
# read smpl betas from original source
smpl_path = os.path.join(os.path.join(os.path.dirname(opt.scene_dir), actor_name), f'smpl_output_optimized.pkl')
raw_smpl = joblib.load(smpl_path)
raw_smpl = raw_smpl[list(raw_smpl.keys())[0]]
beta = np.array(raw_smpl['betas']).mean(0)
body_model = SMPL(
'./data/smplx/smpl',
gender='neutral',
device=torch.device('cpu')
)
# read manual alignment
manual_trans, manual_rot, manual_scale = get_manual_alignment(opt.motion_name, actor_name)
M_R = transformations.euler_matrix(*manual_rot)
M_S = np.eye(4)
M_S[:3, :3] *= manual_scale
M_T = transformations.translation_matrix(manual_trans)
T_mocap2scene = M_T[None] @ M_S[None] @ M_R[None]
# 大 pose
da_smpl = np.zeros_like(np.zeros((1, 72)))
da_smpl = da_smpl.reshape(-1, 3)
da_smpl[1] = np.array([0, 0, 1.0])
da_smpl[2] = np.array([0, 0, -1.0])
da_smpl = da_smpl.reshape(1, -1)
raw_verts = []
Ts = []
for i, p in enumerate(poses):
# transformations from T-pose to mocap pose(random scale)
_, T_t2mocap = body_model.verts_transformations(
return_tensor=False,
poses=p[None],
betas=beta[None],
transl=trans[i][None]
)
# transform mocap data to scene space
T_t2scene = T_mocap2scene @ T_t2mocap
# T-pose to Da-pose
_, T_t2da = body_model.verts_transformations(
return_tensor=False,
poses=da_smpl,
betas=beta[None]
)
# Da-pose to scene space
T_da2scene = T_t2scene @ np.linalg.inv(T_t2da)
# Da-pose verts
temp_static_verts, _ = body_model(
return_tensor=False,
return_joints=True,
poses=da_smpl,
betas=beta[None]
)
# verts in scene
verts = np.einsum('BNi, Bi->BN', T_da2scene, ray_utils.to_homogeneous(temp_static_verts))[:, :3].astype(np.float32)
raw_verts.append(verts)
Ts.append(T_da2scene)
return net, raw_verts, Ts
def read_actors(opt):
nets_list, verts_list, Ts_list = [], [], []
for actor in opt.actors:
net, raw_verts, Ts = read_actor(opt, actor)
nets_list.append(net)
verts_list.append(raw_verts)
Ts_list.append(Ts)
verts_list = np.array(verts_list)
Ts_list = np.array(Ts_list)
return nets_list, verts_list, Ts_list
def main(opt):
# read scene
scene = neuman_helper.NeuManReader.read_scene(
opt.scene_dir,
tgt_size=opt.render_size,
normalize=opt.normalize,
bkg_range_scale=opt.bkg_range_scale,
human_range_scale=opt.human_range_scale,
smpl_type='optimized'
)
if opt.geo_threshold < 0:
bones = []
for i in range(len(scene.captures)):
bones.append(np.linalg.norm(scene.smpls[i]['joints_3d'][3] - scene.smpls[i]['joints_3d'][0]))
opt.geo_threshold = np.mean(bones)
# read all_actors
nets_list, verts_list, Ts_list = read_actors(opt)
# read novel captures(cameras)
caps = read_novel_caps(opt, len(verts_list[0]), scene)
# read background network
bkg_net = human_nerf.HumanNeRF(opt)
weights = torch.load(opt.weights_path, map_location='cpu')
utils.safe_load_weights(bkg_net, weights['hybrid_model_state_dict'])
# render
for i in range(len(caps)):
out = render_utils.render_hybrid_nerf_multi_persons(
bkg_net,
caps[i],
nets_list,
verts_list[:, i, ...],
[scene.faces] * len(nets_list),
Ts_list[:, i, ...],
rays_per_batch=opt.rays_per_batch,
samples_per_ray=opt.samples_per_ray,
geo_threshold=opt.geo_threshold,
return_depth=False
)
save_path = os.path.join('./demo', f'gathering/{opt.motion_name}', f'out_{str(i).zfill(4)}.png')
if not os.path.isdir(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
imageio.imsave(save_path, out)
print(f'image saved: {save_path}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
options.set_general_option(parser)
opt, _ = parser.parse_known_args()
options.set_nerf_option(parser)
options.set_pe_option(parser)
options.set_render_option(parser)
parser.add_argument('--scene_dir', required=True, type=str, help='scene directory')
parser.add_argument('--offset_scale', default=1.0, type=float, help='scale the predicted offset')
parser.add_argument('--geo_threshold', default=-1, type=float, help='')
parser.add_argument('--normalize', default=True, type=options.str2bool, help='')
parser.add_argument('--bkg_range_scale', default=3, type=float, help='extend near/far range for background')
parser.add_argument('--human_range_scale', default=1.5, type=float, help='extend near/far range for human')
parser.add_argument('--num_offset_nets', default=1, type=int, help='how many offset networks')
parser.add_argument('--offset_scale_type', default='linear', type=str, help='no/linear/tanh')
parser.add_argument('--motion_name', default='dance_together', type=str, help='')
parser.add_argument('--actors', nargs="*", type=str, default=['seattle', 'citron', 'parkinglot'])
opt = parser.parse_args()
if opt.render_h is None:
opt.render_size = None
else:
opt.render_size = (opt.render_h, opt.render_w)
main(opt)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。