1 Star 0 Fork 0

13683679291/fabric

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
issuerkey.go 5.53 KB
一键复制 编辑 原始数据 按行查看 历史
/*
Copyright IBM Corp. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
*/
package idemix
import (
"github.com/golang/protobuf/proto"
"github.com/hyperledger/fabric-amcl/amcl"
"github.com/hyperledger/fabric-amcl/amcl/FP256BN"
"github.com/pkg/errors"
)
// The Issuer secret ISk and public IPk keys are used to issue credentials and
// to verify signatures created using the credentials
// The Issuer Secret Key is a random exponent (generated randomly from Z*_p)
// The Issuer Public Key consists of several elliptic curve points (ECP),
// where index 1 corresponds to group G1 and 2 to group G2)
// HSk, HRand, BarG1, BarG2, an ECP array HAttrs, and an ECP2 W,
// and a proof of knowledge of the corresponding secret key
// NewIssuerKey creates a new issuer key pair taking an array of attribute names
// that will be contained in credentials certified by this issuer (a credential specification)
// See http://eprint.iacr.org/2016/663.pdf Sec. 4.3, for references.
func NewIssuerKey(AttributeNames []string, rng *amcl.RAND) (*IssuerKey, error) {
// validate inputs
// check for duplicated attributes
attributeNamesMap := map[string]bool{}
for _, name := range AttributeNames {
if attributeNamesMap[name] {
return nil, errors.Errorf("attribute %s appears multiple times in AttributeNames", name)
}
attributeNamesMap[name] = true
}
key := new(IssuerKey)
// generate issuer secret key
ISk := RandModOrder(rng)
key.Isk = BigToBytes(ISk)
// generate the corresponding public key
key.Ipk = new(IssuerPublicKey)
key.Ipk.AttributeNames = AttributeNames
W := GenG2.Mul(ISk)
key.Ipk.W = Ecp2ToProto(W)
// generate bases that correspond to the attributes
key.Ipk.HAttrs = make([]*ECP, len(AttributeNames))
for i := 0; i < len(AttributeNames); i++ {
key.Ipk.HAttrs[i] = EcpToProto(GenG1.Mul(RandModOrder(rng)))
}
// generate base for the secret key
HSk := GenG1.Mul(RandModOrder(rng))
key.Ipk.HSk = EcpToProto(HSk)
// generate base for the randomness
HRand := GenG1.Mul(RandModOrder(rng))
key.Ipk.HRand = EcpToProto(HRand)
BarG1 := GenG1.Mul(RandModOrder(rng))
key.Ipk.BarG1 = EcpToProto(BarG1)
BarG2 := BarG1.Mul(ISk)
key.Ipk.BarG2 = EcpToProto(BarG2)
// generate a zero-knowledge proof of knowledge (ZK PoK) of the secret key which
// is in W and BarG2.
// Sample the randomness needed for the proof
r := RandModOrder(rng)
// Step 1: First message (t-values)
t1 := GenG2.Mul(r) // t1 = g_2^r, cover W
t2 := BarG1.Mul(r) // t2 = (\bar g_1)^r, cover BarG2
// Step 2: Compute the Fiat-Shamir hash, forming the challenge of the ZKP.
proofData := make([]byte, 18*FieldBytes+3)
index := 0
index = appendBytesG2(proofData, index, t1)
index = appendBytesG1(proofData, index, t2)
index = appendBytesG2(proofData, index, GenG2)
index = appendBytesG1(proofData, index, BarG1)
index = appendBytesG2(proofData, index, W)
index = appendBytesG1(proofData, index, BarG2)
proofC := HashModOrder(proofData)
key.Ipk.ProofC = BigToBytes(proofC)
// Step 3: reply to the challenge message (s-values)
proofS := Modadd(FP256BN.Modmul(proofC, ISk, GroupOrder), r, GroupOrder) // // s = r + C \cdot ISk
key.Ipk.ProofS = BigToBytes(proofS)
// Hash the public key
serializedIPk, err := proto.Marshal(key.Ipk)
if err != nil {
return nil, errors.Wrap(err, "failed to marshal issuer public key")
}
key.Ipk.Hash = BigToBytes(HashModOrder(serializedIPk))
// We are done
return key, nil
}
// Check checks that this issuer public key is valid, i.e.
// that all components are present and a ZK proofs verifies
func (IPk *IssuerPublicKey) Check() error {
// Unmarshall the public key
NumAttrs := len(IPk.GetAttributeNames())
HSk := EcpFromProto(IPk.GetHSk())
HRand := EcpFromProto(IPk.GetHRand())
HAttrs := make([]*FP256BN.ECP, len(IPk.GetHAttrs()))
for i := 0; i < len(IPk.GetHAttrs()); i++ {
HAttrs[i] = EcpFromProto(IPk.GetHAttrs()[i])
}
BarG1 := EcpFromProto(IPk.GetBarG1())
BarG2 := EcpFromProto(IPk.GetBarG2())
W := Ecp2FromProto(IPk.GetW())
ProofC := FP256BN.FromBytes(IPk.GetProofC())
ProofS := FP256BN.FromBytes(IPk.GetProofS())
// Check that the public key is well-formed
if NumAttrs < 0 ||
HSk == nil ||
HRand == nil ||
BarG1 == nil ||
BarG1.Is_infinity() ||
BarG2 == nil ||
HAttrs == nil ||
len(IPk.HAttrs) < NumAttrs {
return errors.Errorf("some part of the public key is undefined")
}
for i := 0; i < NumAttrs; i++ {
if IPk.HAttrs[i] == nil {
return errors.Errorf("some part of the public key is undefined")
}
}
// Verify Proof
// Recompute challenge
proofData := make([]byte, 18*FieldBytes+3)
index := 0
// Recompute t-values using s-values
t1 := GenG2.Mul(ProofS)
t1.Add(W.Mul(FP256BN.Modneg(ProofC, GroupOrder))) // t1 = g_2^s \cdot W^{-C}
t2 := BarG1.Mul(ProofS)
t2.Add(BarG2.Mul(FP256BN.Modneg(ProofC, GroupOrder))) // t2 = {\bar g_1}^s \cdot {\bar g_2}^C
index = appendBytesG2(proofData, index, t1)
index = appendBytesG1(proofData, index, t2)
index = appendBytesG2(proofData, index, GenG2)
index = appendBytesG1(proofData, index, BarG1)
index = appendBytesG2(proofData, index, W)
index = appendBytesG1(proofData, index, BarG2)
// Verify that the challenge is the same
if *ProofC != *HashModOrder(proofData) {
return errors.Errorf("zero knowledge proof in public key invalid")
}
return IPk.SetHash()
}
// SetHash appends a hash of a serialized public key
func (IPk *IssuerPublicKey) SetHash() error {
IPk.Hash = nil
serializedIPk, err := proto.Marshal(IPk)
if err != nil {
return errors.Wrap(err, "Failed to marshal issuer public key")
}
IPk.Hash = BigToBytes(HashModOrder(serializedIPk))
return nil
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mmcro/fabric.git
git@gitee.com:mmcro/fabric.git
mmcro
fabric
fabric
v2.1.1

搜索帮助