There are two Dockerfile
files to build docker images, one to build an image with the mmengine package and the other with the mmengine development environment.
.
|-- README.md
|-- dev # build with mmengine development environment
| `-- Dockerfile
`-- release # build with mmengine package
`-- Dockerfile
Build with local repository
git clone https://github.com/open-mmlab/mmengine.git && cd mmengine
docker build -t mmengine -f docker/release/Dockerfile .
Or build with remote repository
docker build -t mmengine https://github.com/open-mmlab/mmengine.git#main:docker/release
The Dockerfile installs the latest released version of mmengine by default, but you can specify mmengine versions to install expected versions.
docker image build -t mmengine -f docker/release/Dockerfile --build-arg MMENGINE=0.1.0 .
If you also want to use other versions of PyTorch and CUDA, you can also pass them when building docker images.
An example to build an image with PyTorch 1.11 and CUDA 11.3.
docker build -t mmengine -f docker/release/Dockerfile \
--build-arg PYTORCH=1.9.0 \
--build-arg CUDA=11.1 \
--build-arg CUDNN=8 .
More available versions of PyTorch and CUDA can be found at dockerhub/pytorch.
If you want to build an docker image with the mmengine development environment, you can use the following command
git clone https://github.com/open-mmlab/mmengine.git && cd mmengine
docker build -t mmengine -f docker/dev/Dockerfile .
docker run --gpus all --shm-size=8g -it mmengine
See docker run for more usages.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。