代码拉取完成,页面将自动刷新
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
from unittest import TestCase
import numpy as np
import torch
from mmengine.structures import PixelData
from mmseg.evaluation import IoUMetric
from mmseg.structures import SegDataSample
class TestIoUMetric(TestCase):
def _demo_mm_inputs(self,
batch_size=2,
image_shapes=(3, 64, 64),
num_classes=5):
"""Create a superset of inputs needed to run test or train batches.
Args:
batch_size (int): batch size. Default to 2.
image_shapes (List[tuple], Optional): image shape.
Default to (3, 64, 64)
num_classes (int): number of different classes.
Default to 5.
"""
if isinstance(image_shapes, list):
assert len(image_shapes) == batch_size
else:
image_shapes = [image_shapes] * batch_size
data_samples = []
for idx in range(batch_size):
image_shape = image_shapes[idx]
_, h, w = image_shape
data_sample = SegDataSample()
gt_semantic_seg = np.random.randint(
0, num_classes, (1, h, w), dtype=np.uint8)
gt_semantic_seg = torch.LongTensor(gt_semantic_seg)
gt_sem_seg_data = dict(data=gt_semantic_seg)
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
data_samples.append(data_sample.to_dict())
return data_samples
def _demo_mm_model_output(self,
data_samples,
batch_size=2,
image_shapes=(3, 64, 64),
num_classes=5):
_, h, w = image_shapes
for data_sample in data_samples:
data_sample['seg_logits'] = dict(
data=torch.randn(num_classes, h, w))
data_sample['pred_sem_seg'] = dict(
data=torch.randint(0, num_classes, (1, h, w)))
data_sample[
'img_path'] = 'tests/data/pseudo_dataset/imgs/00000_img.jpg'
return data_samples
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
data_samples = self._demo_mm_inputs()
data_samples = self._demo_mm_model_output(data_samples)
iou_metric = IoUMetric(iou_metrics=['mIoU'])
iou_metric.dataset_meta = dict(
classes=['wall', 'building', 'sky', 'floor', 'tree'],
label_map=dict(),
reduce_zero_label=False)
iou_metric.process([0] * len(data_samples), data_samples)
res = iou_metric.evaluate(2)
self.assertIsInstance(res, dict)
# test save segment file in output_dir
iou_metric = IoUMetric(iou_metrics=['mIoU'], output_dir='tmp')
iou_metric.dataset_meta = dict(
classes=['wall', 'building', 'sky', 'floor', 'tree'],
label_map=dict(),
reduce_zero_label=False)
iou_metric.process([0] * len(data_samples), data_samples)
assert osp.exists('tmp')
assert osp.isfile('tmp/00000_img.png')
shutil.rmtree('tmp')
# test format_only
iou_metric = IoUMetric(
iou_metrics=['mIoU'], output_dir='tmp', format_only=True)
iou_metric.dataset_meta = dict(
classes=['wall', 'building', 'sky', 'floor', 'tree'],
label_map=dict(),
reduce_zero_label=False)
iou_metric.process([0] * len(data_samples), data_samples)
assert iou_metric.results == []
assert osp.exists('tmp')
assert osp.isfile('tmp/00000_img.png')
shutil.rmtree('tmp')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。