1 Star 9 Fork 9

openvinotoolkit-prc/openvino_notebooks

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

Object detection and masking from prompts with GroundedSAM (GroundingDINO + SAM) and OpenVINO

Colab

In this notebook, we provide the OpenVINO™ optimization for the combination of GroundingDINO + SAM = GroundedSAM on Intel® platforms.

GroundedSAM aims to detect and segment anything with text inputs. GroundingDINO is a language-guided query selection module to enhance object detection using input text. It selects relevant features from image and text inputs and returns predicted boxes with detections. The Segment Anything Model (SAM) produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. We use box predictions from GroundingDINO to mask the original image.

More details about the model can be found in the paper, and the official repository.

In this tutorial, we will explore how to convert and run GroundedSAM using OpenVINO.

image

Notebook Contents

  • Download checkpoints and load PyTorch model
  • Convert GroundingDINO to OpenVINO IR format
  • Run OpenVINO optimized GroundingDINO
  • Convert SAM to OpenVINO IR
  • Combine GroundingDINO + SAM (GroundedSAM)
  • Interactive GroundedSAM

Installation Instructions

This is a self-contained example that relies solely on its own code.
We recommend running the notebook in a virtual environment. You only need a Jupyter server to start. For details, please refer to Installation Guide.

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/openvinotoolkit-prc/openvino_notebooks.git
git@gitee.com:openvinotoolkit-prc/openvino_notebooks.git
openvinotoolkit-prc
openvino_notebooks
openvino_notebooks
latest

搜索帮助