同步操作将从 连享会/Python-causalml 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research.
It provides a standard interface that allows user to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data.
Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on the model form.
Typical use cases include:
The package currently supports the following methods:
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。